Metamath Proof Explorer


Theorem rlimmulOLD

Description: Obsolete version of rlimmul as of 27-Sep-2024. (Contributed by Mario Carneiro, 22-Sep-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses rlimadd.3 φxABV
rlimadd.4 φxACV
rlimadd.5 φxABD
rlimadd.6 φxACE
Assertion rlimmulOLD φxABCDE

Proof

Step Hyp Ref Expression
1 rlimadd.3 φxABV
2 rlimadd.4 φxACV
3 rlimadd.5 φxABD
4 rlimadd.6 φxACE
5 1 3 rlimmptrcl φxAB
6 2 4 rlimmptrcl φxAC
7 rlimcl xABDD
8 3 7 syl φD
9 rlimcl xACEE
10 4 9 syl φE
11 ax-mulf ×:×
12 11 a1i φ×:×
13 simpr φy+y+
14 8 adantr φy+D
15 10 adantr φy+E
16 mulcn2 y+DEz+w+uvuD<zvE<wuvDE<y
17 13 14 15 16 syl3anc φy+z+w+uvuD<zvE<wuvDE<y
18 5 6 8 10 3 4 12 17 rlimcn2 φxABCDE