| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rlimcld2.1 |  | 
						
							| 2 |  | rlimcld2.2 |  | 
						
							| 3 |  | rlimrecl.3 |  | 
						
							| 4 |  | ax-resscn |  | 
						
							| 5 | 4 | a1i |  | 
						
							| 6 |  | eldifi |  | 
						
							| 7 | 6 | adantl |  | 
						
							| 8 | 7 | imcld |  | 
						
							| 9 | 8 | recnd |  | 
						
							| 10 |  | eldifn |  | 
						
							| 11 | 10 | adantl |  | 
						
							| 12 |  | reim0b |  | 
						
							| 13 | 7 12 | syl |  | 
						
							| 14 | 13 | necon3bbid |  | 
						
							| 15 | 11 14 | mpbid |  | 
						
							| 16 | 9 15 | absrpcld |  | 
						
							| 17 | 7 | adantr |  | 
						
							| 18 |  | simpr |  | 
						
							| 19 | 18 | recnd |  | 
						
							| 20 | 17 19 | subcld |  | 
						
							| 21 |  | absimle |  | 
						
							| 22 | 20 21 | syl |  | 
						
							| 23 | 17 19 | imsubd |  | 
						
							| 24 |  | reim0 |  | 
						
							| 25 | 24 | adantl |  | 
						
							| 26 | 25 | oveq2d |  | 
						
							| 27 | 9 | adantr |  | 
						
							| 28 | 27 | subid1d |  | 
						
							| 29 | 23 26 28 | 3eqtrrd |  | 
						
							| 30 | 29 | fveq2d |  | 
						
							| 31 | 19 17 | abssubd |  | 
						
							| 32 | 22 30 31 | 3brtr4d |  | 
						
							| 33 | 1 2 5 16 32 3 | rlimcld2 |  |