| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluzelcn |  | 
						
							| 2 | 1 | sqcld |  | 
						
							| 3 |  | ax-1cn |  | 
						
							| 4 |  | subcl |  | 
						
							| 5 | 2 3 4 | sylancl |  | 
						
							| 6 | 5 | sqrtcld |  | 
						
							| 7 |  | eluz2nn |  | 
						
							| 8 | 7 | nnsqcld |  | 
						
							| 9 |  | nnm1nn0 |  | 
						
							| 10 | 8 9 | syl |  | 
						
							| 11 |  | nnm1nn0 |  | 
						
							| 12 | 7 11 | syl |  | 
						
							| 13 |  | binom2sub1 |  | 
						
							| 14 | 1 13 | syl |  | 
						
							| 15 |  | 2cnd |  | 
						
							| 16 | 15 1 | mulcld |  | 
						
							| 17 | 3 | a1i |  | 
						
							| 18 | 2 16 17 | subsubd |  | 
						
							| 19 | 14 18 | eqtr4d |  | 
						
							| 20 |  | 1red |  | 
						
							| 21 |  | 2re |  | 
						
							| 22 | 21 | a1i |  | 
						
							| 23 |  | eluzelre |  | 
						
							| 24 | 22 23 | remulcld |  | 
						
							| 25 | 24 20 | resubcld |  | 
						
							| 26 | 8 | nnred |  | 
						
							| 27 |  | eluz2gt1 |  | 
						
							| 28 | 20 20 23 27 27 | lt2addmuld |  | 
						
							| 29 |  | remulcl |  | 
						
							| 30 | 21 23 29 | sylancr |  | 
						
							| 31 | 20 20 30 | ltaddsubd |  | 
						
							| 32 | 28 31 | mpbid |  | 
						
							| 33 | 20 25 26 32 | ltsub2dd |  | 
						
							| 34 | 19 33 | eqbrtrd |  | 
						
							| 35 | 26 | ltm1d |  | 
						
							| 36 |  | npcan |  | 
						
							| 37 | 1 3 36 | sylancl |  | 
						
							| 38 | 37 | oveq1d |  | 
						
							| 39 | 35 38 | breqtrrd |  | 
						
							| 40 |  | nonsq |  | 
						
							| 41 | 10 12 34 39 40 | syl22anc |  | 
						
							| 42 | 6 41 | eldifd |  |