Metamath Proof Explorer


Theorem rmxfval

Description: Value of the X sequence. Not used after rmxyval is proved. (Contributed by Stefan O'Rear, 21-Sep-2014)

Ref Expression
Assertion rmxfval A2NAXrmN=1stb0×1stb+A212ndb-1A+A21N

Proof

Step Hyp Ref Expression
1 oveq1 a=Aa2=A2
2 1 fvoveq1d a=Aa21=A21
3 2 oveq1d a=Aa212ndb=A212ndb
4 3 oveq2d a=A1stb+a212ndb=1stb+A212ndb
5 4 mpteq2dv a=Ab0×1stb+a212ndb=b0×1stb+A212ndb
6 5 cnveqd a=Ab0×1stb+a212ndb-1=b0×1stb+A212ndb-1
7 6 adantr a=An=Nb0×1stb+a212ndb-1=b0×1stb+A212ndb-1
8 id a=Aa=A
9 8 2 oveq12d a=Aa+a21=A+A21
10 id n=Nn=N
11 9 10 oveqan12d a=An=Na+a21n=A+A21N
12 7 11 fveq12d a=An=Nb0×1stb+a212ndb-1a+a21n=b0×1stb+A212ndb-1A+A21N
13 12 fveq2d a=An=N1stb0×1stb+a212ndb-1a+a21n=1stb0×1stb+A212ndb-1A+A21N
14 df-rmx Xrm=a2,n1stb0×1stb+a212ndb-1a+a21n
15 fvex 1stb0×1stb+A212ndb-1A+A21NV
16 13 14 15 ovmpoa A2NAXrmN=1stb0×1stb+A212ndb-1A+A21N