Metamath Proof Explorer


Theorem rngcidALTV

Description: The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses rngccatALTV.c C=RngCatALTVU
rngcidALTV.b B=BaseC
rngcidALTV.o 1˙=IdC
rngcidALTV.u φUV
rngcidALTV.x φXB
rngcidALTV.s S=BaseX
Assertion rngcidALTV φ1˙X=IS

Proof

Step Hyp Ref Expression
1 rngccatALTV.c C=RngCatALTVU
2 rngcidALTV.b B=BaseC
3 rngcidALTV.o 1˙=IdC
4 rngcidALTV.u φUV
5 rngcidALTV.x φXB
6 rngcidALTV.s S=BaseX
7 1 2 rngccatidALTV UVCCatIdC=xBIBasex
8 4 7 syl φCCatIdC=xBIBasex
9 8 simprd φIdC=xBIBasex
10 3 9 eqtrid φ1˙=xBIBasex
11 fveq2 x=XBasex=BaseX
12 11 adantl φx=XBasex=BaseX
13 12 reseq2d φx=XIBasex=IBaseX
14 fvex BaseXV
15 resiexg BaseXVIBaseXV
16 14 15 mp1i φIBaseXV
17 10 13 5 16 fvmptd φ1˙X=IBaseX
18 6 reseq2i IS=IBaseX
19 17 18 eqtr4di φ1˙X=IS