Description: The set of the non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 22-Feb-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isrnghm.b | |
|
isrnghm.t | |
||
isrnghm.m | |
||
rnghmval.c | |
||
rnghmval.p | |
||
rnghmval.a | |
||
Assertion | rnghmval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrnghm.b | |
|
2 | isrnghm.t | |
|
3 | isrnghm.m | |
|
4 | rnghmval.c | |
|
5 | rnghmval.p | |
|
6 | rnghmval.a | |
|
7 | df-rnghomo | |
|
8 | 7 | a1i | |
9 | fveq2 | |
|
10 | 9 1 | eqtr4di | |
11 | 10 | csbeq1d | |
12 | fveq2 | |
|
13 | 12 4 | eqtr4di | |
14 | 13 | csbeq1d | |
15 | 14 | csbeq2dv | |
16 | 11 15 | sylan9eq | |
17 | 16 | adantl | |
18 | 1 | fvexi | |
19 | 4 | fvexi | |
20 | oveq12 | |
|
21 | 20 | ancoms | |
22 | raleq | |
|
23 | 22 | raleqbi1dv | |
24 | 23 | adantr | |
25 | 21 24 | rabeqbidv | |
26 | 18 19 25 | csbie2 | |
27 | fveq2 | |
|
28 | 27 5 | eqtr4di | |
29 | 28 | oveqdr | |
30 | 29 | fveq2d | |
31 | fveq2 | |
|
32 | 31 6 | eqtr4di | |
33 | 32 | adantl | |
34 | 33 | oveqd | |
35 | 30 34 | eqeq12d | |
36 | fveq2 | |
|
37 | 36 2 | eqtr4di | |
38 | 37 | oveqdr | |
39 | 38 | fveq2d | |
40 | fveq2 | |
|
41 | 40 3 | eqtr4di | |
42 | 41 | adantl | |
43 | 42 | oveqd | |
44 | 39 43 | eqeq12d | |
45 | 35 44 | anbi12d | |
46 | 45 | 2ralbidv | |
47 | 46 | rabbidv | |
48 | 26 47 | eqtrid | |
49 | 48 | adantl | |
50 | 17 49 | eqtrd | |
51 | simpl | |
|
52 | simpr | |
|
53 | ovex | |
|
54 | 53 | rabex | |
55 | 54 | a1i | |
56 | 8 50 51 52 55 | ovmpod | |