Metamath Proof Explorer


Theorem rnghmval

Description: The set of the non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 22-Feb-2020)

Ref Expression
Hypotheses isrnghm.b B=BaseR
isrnghm.t ·˙=R
isrnghm.m ˙=S
rnghmval.c C=BaseS
rnghmval.p +˙=+R
rnghmval.a ˙=+S
Assertion rnghmval RRngSRngRRngHomoS=fCB|xByBfx+˙y=fx˙fyfx·˙y=fx˙fy

Proof

Step Hyp Ref Expression
1 isrnghm.b B=BaseR
2 isrnghm.t ·˙=R
3 isrnghm.m ˙=S
4 rnghmval.c C=BaseS
5 rnghmval.p +˙=+R
6 rnghmval.a ˙=+S
7 df-rnghomo RngHomo=rRng,sRngBaser/vBases/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy
8 7 a1i RRngSRngRngHomo=rRng,sRngBaser/vBases/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy
9 fveq2 r=RBaser=BaseR
10 9 1 eqtr4di r=RBaser=B
11 10 csbeq1d r=RBaser/vBases/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy=B/vBases/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy
12 fveq2 s=SBases=BaseS
13 12 4 eqtr4di s=SBases=C
14 13 csbeq1d s=SBases/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy=C/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy
15 14 csbeq2dv s=SB/vBases/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy=B/vC/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy
16 11 15 sylan9eq r=Rs=SBaser/vBases/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy=B/vC/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy
17 16 adantl RRngSRngr=Rs=SBaser/vBases/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy=B/vC/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy
18 1 fvexi BV
19 4 fvexi CV
20 oveq12 w=Cv=Bwv=CB
21 20 ancoms v=Bw=Cwv=CB
22 raleq v=Byvfx+ry=fx+sfyfxry=fxsfyyBfx+ry=fx+sfyfxry=fxsfy
23 22 raleqbi1dv v=Bxvyvfx+ry=fx+sfyfxry=fxsfyxByBfx+ry=fx+sfyfxry=fxsfy
24 23 adantr v=Bw=Cxvyvfx+ry=fx+sfyfxry=fxsfyxByBfx+ry=fx+sfyfxry=fxsfy
25 21 24 rabeqbidv v=Bw=Cfwv|xvyvfx+ry=fx+sfyfxry=fxsfy=fCB|xByBfx+ry=fx+sfyfxry=fxsfy
26 18 19 25 csbie2 B/vC/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy=fCB|xByBfx+ry=fx+sfyfxry=fxsfy
27 fveq2 r=R+r=+R
28 27 5 eqtr4di r=R+r=+˙
29 28 oveqdr r=Rs=Sx+ry=x+˙y
30 29 fveq2d r=Rs=Sfx+ry=fx+˙y
31 fveq2 s=S+s=+S
32 31 6 eqtr4di s=S+s=˙
33 32 adantl r=Rs=S+s=˙
34 33 oveqd r=Rs=Sfx+sfy=fx˙fy
35 30 34 eqeq12d r=Rs=Sfx+ry=fx+sfyfx+˙y=fx˙fy
36 fveq2 r=Rr=R
37 36 2 eqtr4di r=Rr=·˙
38 37 oveqdr r=Rs=Sxry=x·˙y
39 38 fveq2d r=Rs=Sfxry=fx·˙y
40 fveq2 s=Ss=S
41 40 3 eqtr4di s=Ss=˙
42 41 adantl r=Rs=Ss=˙
43 42 oveqd r=Rs=Sfxsfy=fx˙fy
44 39 43 eqeq12d r=Rs=Sfxry=fxsfyfx·˙y=fx˙fy
45 35 44 anbi12d r=Rs=Sfx+ry=fx+sfyfxry=fxsfyfx+˙y=fx˙fyfx·˙y=fx˙fy
46 45 2ralbidv r=Rs=SxByBfx+ry=fx+sfyfxry=fxsfyxByBfx+˙y=fx˙fyfx·˙y=fx˙fy
47 46 rabbidv r=Rs=SfCB|xByBfx+ry=fx+sfyfxry=fxsfy=fCB|xByBfx+˙y=fx˙fyfx·˙y=fx˙fy
48 26 47 eqtrid r=Rs=SB/vC/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy=fCB|xByBfx+˙y=fx˙fyfx·˙y=fx˙fy
49 48 adantl RRngSRngr=Rs=SB/vC/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy=fCB|xByBfx+˙y=fx˙fyfx·˙y=fx˙fy
50 17 49 eqtrd RRngSRngr=Rs=SBaser/vBases/wfwv|xvyvfx+ry=fx+sfyfxry=fxsfy=fCB|xByBfx+˙y=fx˙fyfx·˙y=fx˙fy
51 simpl RRngSRngRRng
52 simpr RRngSRngSRng
53 ovex CBV
54 53 rabex fCB|xByBfx+˙y=fx˙fyfx·˙y=fx˙fyV
55 54 a1i RRngSRngfCB|xByBfx+˙y=fx˙fyfx·˙y=fx˙fyV
56 8 50 51 52 55 ovmpod RRngSRngRRngHomoS=fCB|xByBfx+˙y=fx˙fyfx·˙y=fx˙fy