Metamath Proof Explorer


Theorem rngonegrmul

Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ringnegmul.1 G=1stR
ringnegmul.2 H=2ndR
ringnegmul.3 X=ranG
ringnegmul.4 N=invG
Assertion rngonegrmul RRingOpsAXBXNAHB=AHNB

Proof

Step Hyp Ref Expression
1 ringnegmul.1 G=1stR
2 ringnegmul.2 H=2ndR
3 ringnegmul.3 X=ranG
4 ringnegmul.4 N=invG
5 1 rneqi ranG=ran1stR
6 3 5 eqtri X=ran1stR
7 eqid GIdH=GIdH
8 6 2 7 rngo1cl RRingOpsGIdHX
9 1 3 4 rngonegcl RRingOpsGIdHXNGIdHX
10 8 9 mpdan RRingOpsNGIdHX
11 1 2 3 rngoass RRingOpsAXBXNGIdHXAHBHNGIdH=AHBHNGIdH
12 11 3exp2 RRingOpsAXBXNGIdHXAHBHNGIdH=AHBHNGIdH
13 12 com24 RRingOpsNGIdHXBXAXAHBHNGIdH=AHBHNGIdH
14 13 com34 RRingOpsNGIdHXAXBXAHBHNGIdH=AHBHNGIdH
15 10 14 mpd RRingOpsAXBXAHBHNGIdH=AHBHNGIdH
16 15 3imp RRingOpsAXBXAHBHNGIdH=AHBHNGIdH
17 1 2 3 rngocl RRingOpsAXBXAHBX
18 17 3expb RRingOpsAXBXAHBX
19 1 2 3 4 7 rngonegmn1r RRingOpsAHBXNAHB=AHBHNGIdH
20 18 19 syldan RRingOpsAXBXNAHB=AHBHNGIdH
21 20 3impb RRingOpsAXBXNAHB=AHBHNGIdH
22 1 2 3 4 7 rngonegmn1r RRingOpsBXNB=BHNGIdH
23 22 3adant2 RRingOpsAXBXNB=BHNGIdH
24 23 oveq2d RRingOpsAXBXAHNB=AHBHNGIdH
25 16 21 24 3eqtr4d RRingOpsAXBXNAHB=AHNB