Description: Negation of a product in a ring. (Contributed by Jeff Madsen, 19-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringnegmul.1 | |
|
ringnegmul.2 | |
||
ringnegmul.3 | |
||
ringnegmul.4 | |
||
Assertion | rngonegrmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegmul.1 | |
|
2 | ringnegmul.2 | |
|
3 | ringnegmul.3 | |
|
4 | ringnegmul.4 | |
|
5 | 1 | rneqi | |
6 | 3 5 | eqtri | |
7 | eqid | |
|
8 | 6 2 7 | rngo1cl | |
9 | 1 3 4 | rngonegcl | |
10 | 8 9 | mpdan | |
11 | 1 2 3 | rngoass | |
12 | 11 | 3exp2 | |
13 | 12 | com24 | |
14 | 13 | com34 | |
15 | 10 14 | mpd | |
16 | 15 | 3imp | |
17 | 1 2 3 | rngocl | |
18 | 17 | 3expb | |
19 | 1 2 3 4 7 | rngonegmn1r | |
20 | 18 19 | syldan | |
21 | 20 | 3impb | |
22 | 1 2 3 4 7 | rngonegmn1r | |
23 | 22 | 3adant2 | |
24 | 23 | oveq2d | |
25 | 16 21 24 | 3eqtr4d | |