Description: The product of the quotient with a two-sided ideal and the two-sided ideal is a non-unital ring. (Contributed by AV, 23-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlring.r | |
|
rng2idlring.i | |
||
rng2idlring.j | |
||
rng2idlring.u | |
||
rng2idlring.b | |
||
rng2idlring.t | |
||
rng2idlring.1 | |
||
rngqiprngim.g | |
||
rngqiprngim.q | |
||
rngqiprngim.c | |
||
rngqiprngim.p | |
||
Assertion | rngqiprng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | |
|
2 | rng2idlring.i | |
|
3 | rng2idlring.j | |
|
4 | rng2idlring.u | |
|
5 | rng2idlring.b | |
|
6 | rng2idlring.t | |
|
7 | rng2idlring.1 | |
|
8 | rngqiprngim.g | |
|
9 | rngqiprngim.q | |
|
10 | rngqiprngim.c | |
|
11 | rngqiprngim.p | |
|
12 | ringrng | |
|
13 | 4 12 | syl | |
14 | 3 13 | eqeltrrid | |
15 | 1 2 14 | rng2idlsubrng | Could not format ( ph -> I e. ( SubRng ` R ) ) : No typesetting found for |- ( ph -> I e. ( SubRng ` R ) ) with typecode |- |
16 | subrngsubg | Could not format ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) ) : No typesetting found for |- ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) ) with typecode |- | |
17 | 15 16 | syl | |
18 | 8 | oveq2i | |
19 | 9 18 | eqtri | |
20 | eqid | |
|
21 | 19 20 | qus2idrng | |
22 | 1 2 17 21 | syl3anc | |
23 | 11 22 13 | xpsrngd | |