Metamath Proof Explorer


Theorem rngqiprng

Description: The product of the quotient with a two-sided ideal and the two-sided ideal is a non-unital ring. (Contributed by AV, 23-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
rngqiprngim.g ˙=R~QGI
rngqiprngim.q Q=R/𝑠˙
rngqiprngim.c C=BaseQ
rngqiprngim.p P=Q×𝑠J
Assertion rngqiprng φPRng

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 rngqiprngim.g ˙=R~QGI
9 rngqiprngim.q Q=R/𝑠˙
10 rngqiprngim.c C=BaseQ
11 rngqiprngim.p P=Q×𝑠J
12 ringrng JRingJRng
13 4 12 syl φJRng
14 3 13 eqeltrrid φR𝑠IRng
15 1 2 14 rng2idlsubrng Could not format ( ph -> I e. ( SubRng ` R ) ) : No typesetting found for |- ( ph -> I e. ( SubRng ` R ) ) with typecode |-
16 subrngsubg Could not format ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) ) : No typesetting found for |- ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) ) with typecode |-
17 15 16 syl φISubGrpR
18 8 oveq2i R/𝑠˙=R/𝑠R~QGI
19 9 18 eqtri Q=R/𝑠R~QGI
20 eqid 2IdealR=2IdealR
21 19 20 qus2idrng RRngI2IdealRISubGrpRQRng
22 1 2 17 21 syl3anc φQRng
23 11 22 13 xpsrngd φPRng