Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|
2 |
|
rng2idlring.i |
|
3 |
|
rng2idlring.j |
|
4 |
|
rng2idlring.u |
|
5 |
|
rng2idlring.b |
|
6 |
|
rng2idlring.t |
|
7 |
|
rng2idlring.1 |
|
8 |
|
eqid |
|
9 |
2 3 8
|
2idlelbas |
|
10 |
9
|
simprd |
|
11 |
|
ringrng |
|
12 |
4 11
|
syl |
|
13 |
3 12
|
eqeltrrid |
|
14 |
1 2 13
|
rng2idl0 |
|
15 |
2 3 8
|
2idlbas |
|
16 |
14 15
|
eleqtrrd |
|
17 |
1 10 16
|
3jca |
|
18 |
8 7
|
ringidcl |
|
19 |
4 18
|
syl |
|
20 |
19
|
anim1ci |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
21 5 6 22
|
rngridlmcl |
|
24 |
17 20 23
|
syl2an2r |
|