Description: Lemma 1 for rngqiprngghm . (Contributed by AV, 25-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlring.r | |
|
rng2idlring.i | |
||
rng2idlring.j | |
||
rng2idlring.u | |
||
rng2idlring.b | |
||
rng2idlring.t | |
||
rng2idlring.1 | |
||
Assertion | rngqiprngghmlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | |
|
2 | rng2idlring.i | |
|
3 | rng2idlring.j | |
|
4 | rng2idlring.u | |
|
5 | rng2idlring.b | |
|
6 | rng2idlring.t | |
|
7 | rng2idlring.1 | |
|
8 | eqid | |
|
9 | 2 3 8 | 2idlelbas | |
10 | 9 | simprd | |
11 | ringrng | |
|
12 | 4 11 | syl | |
13 | 3 12 | eqeltrrid | |
14 | 1 2 13 | rng2idl0 | |
15 | 2 3 8 | 2idlbas | |
16 | 14 15 | eleqtrrd | |
17 | 1 10 16 | 3jca | |
18 | 8 7 | ringidcl | |
19 | 4 18 | syl | |
20 | 19 | anim1ci | |
21 | eqid | |
|
22 | eqid | |
|
23 | 21 5 6 22 | rngridlmcl | |
24 | 17 20 23 | syl2an2r | |