Metamath Proof Explorer


Theorem rngqiprngghmlem1

Description: Lemma 1 for rngqiprngghm . (Contributed by AV, 25-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
Assertion rngqiprngghmlem1 φAB1˙·˙ABaseJ

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 eqid BaseJ=BaseJ
9 2 3 8 2idlelbas φBaseJLIdealRBaseJLIdealopprR
10 9 simprd φBaseJLIdealopprR
11 ringrng JRingJRng
12 4 11 syl φJRng
13 3 12 eqeltrrid φR𝑠IRng
14 1 2 13 rng2idl0 φ0RI
15 2 3 8 2idlbas φBaseJ=I
16 14 15 eleqtrrd φ0RBaseJ
17 1 10 16 3jca φRRngBaseJLIdealopprR0RBaseJ
18 8 7 ringidcl JRing1˙BaseJ
19 4 18 syl φ1˙BaseJ
20 19 anim1ci φABAB1˙BaseJ
21 eqid 0R=0R
22 eqid LIdealopprR=LIdealopprR
23 21 5 6 22 rngridlmcl RRngBaseJLIdealopprR0RBaseJAB1˙BaseJ1˙·˙ABaseJ
24 17 20 23 syl2an2r φAB1˙·˙ABaseJ