Metamath Proof Explorer


Theorem rngqiprngghmlem1

Description: Lemma 1 for rngqiprngghm . (Contributed by AV, 25-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φ R Rng
rng2idlring.i φ I 2Ideal R
rng2idlring.j J = R 𝑠 I
rng2idlring.u φ J Ring
rng2idlring.b B = Base R
rng2idlring.t · ˙ = R
rng2idlring.1 1 ˙ = 1 J
Assertion rngqiprngghmlem1 φ A B 1 ˙ · ˙ A Base J

Proof

Step Hyp Ref Expression
1 rng2idlring.r φ R Rng
2 rng2idlring.i φ I 2Ideal R
3 rng2idlring.j J = R 𝑠 I
4 rng2idlring.u φ J Ring
5 rng2idlring.b B = Base R
6 rng2idlring.t · ˙ = R
7 rng2idlring.1 1 ˙ = 1 J
8 eqid Base J = Base J
9 2 3 8 2idlelbas φ Base J LIdeal R Base J LIdeal opp r R
10 9 simprd φ Base J LIdeal opp r R
11 ringrng J Ring J Rng
12 4 11 syl φ J Rng
13 3 12 eqeltrrid φ R 𝑠 I Rng
14 1 2 13 rng2idl0 φ 0 R I
15 2 3 8 2idlbas φ Base J = I
16 14 15 eleqtrrd φ 0 R Base J
17 1 10 16 3jca φ R Rng Base J LIdeal opp r R 0 R Base J
18 8 7 ringidcl J Ring 1 ˙ Base J
19 4 18 syl φ 1 ˙ Base J
20 19 anim1ci φ A B A B 1 ˙ Base J
21 eqid 0 R = 0 R
22 eqid LIdeal opp r R = LIdeal opp r R
23 21 5 6 22 rngridlmcl R Rng Base J LIdeal opp r R 0 R Base J A B 1 ˙ Base J 1 ˙ · ˙ A Base J
24 17 20 23 syl2an2r φ A B 1 ˙ · ˙ A Base J