Metamath Proof Explorer


Theorem rp-isfinite5

Description: A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some n e. NN0 . (Contributed by RP, 3-Mar-2020)

Ref Expression
Assertion rp-isfinite5 A Fin n 0 1 n A

Proof

Step Hyp Ref Expression
1 hashcl A Fin A 0
2 isfinite4 A Fin 1 A A
3 2 biimpi A Fin 1 A A
4 1 3 jca A Fin A 0 1 A A
5 eleq1 n = A n 0 A 0
6 oveq2 n = A 1 n = 1 A
7 6 breq1d n = A 1 n A 1 A A
8 5 7 anbi12d n = A n 0 1 n A A 0 1 A A
9 1 4 8 spcedv A Fin n n 0 1 n A
10 df-rex n 0 1 n A n n 0 1 n A
11 9 10 sylibr A Fin n 0 1 n A
12 hasheni 1 n A 1 n = A
13 12 eqcomd 1 n A A = 1 n
14 hashfz1 n 0 1 n = n
15 ovex 1 A V
16 eqtr A = 1 n 1 n = n A = n
17 oveq2 A = n 1 A = 1 n
18 eqeng 1 A V 1 A = 1 n 1 A 1 n
19 17 18 syl5 1 A V A = n 1 A 1 n
20 15 16 19 mpsyl A = 1 n 1 n = n 1 A 1 n
21 13 14 20 syl2anr n 0 1 n A 1 A 1 n
22 entr 1 A 1 n 1 n A 1 A A
23 21 22 sylancom n 0 1 n A 1 A A
24 23 2 sylibr n 0 1 n A A Fin
25 24 rexlimiva n 0 1 n A A Fin
26 11 25 impbii A Fin n 0 1 n A