Description: A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some n e. NN0 . (Contributed by RP, 3-Mar-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | rp-isfinite5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashcl | |
|
2 | isfinite4 | |
|
3 | 2 | biimpi | |
4 | 1 3 | jca | |
5 | eleq1 | |
|
6 | oveq2 | |
|
7 | 6 | breq1d | |
8 | 5 7 | anbi12d | |
9 | 1 4 8 | spcedv | |
10 | df-rex | |
|
11 | 9 10 | sylibr | |
12 | hasheni | |
|
13 | 12 | eqcomd | |
14 | hashfz1 | |
|
15 | ovex | |
|
16 | eqtr | |
|
17 | oveq2 | |
|
18 | eqeng | |
|
19 | 17 18 | syl5 | |
20 | 15 16 19 | mpsyl | |
21 | 13 14 20 | syl2anr | |
22 | entr | |
|
23 | 21 22 | sylancom | |
24 | 23 2 | sylibr | |
25 | 24 | rexlimiva | |
26 | 11 25 | impbii | |