Metamath Proof Explorer


Theorem rp-isfinite5

Description: A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some n e. NN0 . (Contributed by RP, 3-Mar-2020)

Ref Expression
Assertion rp-isfinite5 A Fin n 0 1 n A

Proof

Step Hyp Ref Expression
1 fvex A V
2 hashcl A Fin A 0
3 isfinite4 A Fin 1 A A
4 3 biimpi A Fin 1 A A
5 2 4 jca A Fin A 0 1 A A
6 eleq1 n = A n 0 A 0
7 oveq2 n = A 1 n = 1 A
8 7 breq1d n = A 1 n A 1 A A
9 6 8 anbi12d n = A n 0 1 n A A 0 1 A A
10 9 spcegv A V A 0 1 A A n n 0 1 n A
11 1 5 10 mpsyl A Fin n n 0 1 n A
12 df-rex n 0 1 n A n n 0 1 n A
13 11 12 sylibr A Fin n 0 1 n A
14 hasheni 1 n A 1 n = A
15 14 eqcomd 1 n A A = 1 n
16 hashfz1 n 0 1 n = n
17 ovex 1 A V
18 eqtr A = 1 n 1 n = n A = n
19 oveq2 A = n 1 A = 1 n
20 eqeng 1 A V 1 A = 1 n 1 A 1 n
21 19 20 syl5 1 A V A = n 1 A 1 n
22 17 18 21 mpsyl A = 1 n 1 n = n 1 A 1 n
23 15 16 22 syl2anr n 0 1 n A 1 A 1 n
24 entr 1 A 1 n 1 n A 1 A A
25 23 24 sylancom n 0 1 n A 1 A A
26 25 3 sylibr n 0 1 n A A Fin
27 26 rexlimiva n 0 1 n A A Fin
28 13 27 impbii A Fin n 0 1 n A