Metamath Proof Explorer


Theorem rp-isfinite5

Description: A set is said to be finite if it can be put in one-to-one correspondence with all the natural numbers between 1 and some n e. NN0 . (Contributed by RP, 3-Mar-2020)

Ref Expression
Assertion rp-isfinite5 AFinn01nA

Proof

Step Hyp Ref Expression
1 hashcl AFinA0
2 isfinite4 AFin1AA
3 2 biimpi AFin1AA
4 1 3 jca AFinA01AA
5 eleq1 n=An0A0
6 oveq2 n=A1n=1A
7 6 breq1d n=A1nA1AA
8 5 7 anbi12d n=An01nAA01AA
9 1 4 8 spcedv AFinnn01nA
10 df-rex n01nAnn01nA
11 9 10 sylibr AFinn01nA
12 hasheni 1nA1n=A
13 12 eqcomd 1nAA=1n
14 hashfz1 n01n=n
15 ovex 1AV
16 eqtr A=1n1n=nA=n
17 oveq2 A=n1A=1n
18 eqeng 1AV1A=1n1A1n
19 17 18 syl5 1AVA=n1A1n
20 15 16 19 mpsyl A=1n1n=n1A1n
21 13 14 20 syl2anr n01nA1A1n
22 entr 1A1n1nA1AA
23 21 22 sylancom n01nA1AA
24 23 2 sylibr n01nAAFin
25 24 rexlimiva n01nAAFin
26 11 25 impbii AFinn01nA