Description: If K is relatively prime to N then it is also relatively prime to any divisor M of N . (Contributed by Mario Carneiro, 19-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | rpdvds | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 | |
|
2 | simpl2 | |
|
3 | gcddvds | |
|
4 | 1 2 3 | syl2anc | |
5 | 4 | simpld | |
6 | ax-1ne0 | |
|
7 | simprl | |
|
8 | 7 | neeq1d | |
9 | 6 8 | mpbiri | |
10 | 9 | neneqd | |
11 | simprl | |
|
12 | simprr | |
|
13 | simplrr | |
|
14 | 12 13 | eqbrtrrd | |
15 | simpll3 | |
|
16 | 0dvds | |
|
17 | 15 16 | syl | |
18 | 14 17 | mpbid | |
19 | 11 18 | jca | |
20 | 19 | ex | |
21 | simpl3 | |
|
22 | gcdeq0 | |
|
23 | 1 21 22 | syl2anc | |
24 | 20 23 | sylibrd | |
25 | 10 24 | mtod | |
26 | gcdn0cl | |
|
27 | 1 2 25 26 | syl21anc | |
28 | 27 | nnzd | |
29 | 4 | simprd | |
30 | simprr | |
|
31 | 28 2 21 29 30 | dvdstrd | |
32 | 10 23 | mtbid | |
33 | dvdslegcd | |
|
34 | 28 1 21 32 33 | syl31anc | |
35 | 5 31 34 | mp2and | |
36 | 35 7 | breqtrd | |
37 | nnle1eq1 | |
|
38 | 27 37 | syl | |
39 | 36 38 | mpbid | |