Metamath Proof Explorer


Theorem rpdvds

Description: If K is relatively prime to N then it is also relatively prime to any divisor M of N . (Contributed by Mario Carneiro, 19-Jun-2015)

Ref Expression
Assertion rpdvds KMNKgcdN=1MNKgcdM=1

Proof

Step Hyp Ref Expression
1 simpl1 KMNKgcdN=1MNK
2 simpl2 KMNKgcdN=1MNM
3 gcddvds KMKgcdMKKgcdMM
4 1 2 3 syl2anc KMNKgcdN=1MNKgcdMKKgcdMM
5 4 simpld KMNKgcdN=1MNKgcdMK
6 ax-1ne0 10
7 simprl KMNKgcdN=1MNKgcdN=1
8 7 neeq1d KMNKgcdN=1MNKgcdN010
9 6 8 mpbiri KMNKgcdN=1MNKgcdN0
10 9 neneqd KMNKgcdN=1MN¬KgcdN=0
11 simprl KMNKgcdN=1MNK=0M=0K=0
12 simprr KMNKgcdN=1MNK=0M=0M=0
13 simplrr KMNKgcdN=1MNK=0M=0MN
14 12 13 eqbrtrrd KMNKgcdN=1MNK=0M=00N
15 simpll3 KMNKgcdN=1MNK=0M=0N
16 0dvds N0NN=0
17 15 16 syl KMNKgcdN=1MNK=0M=00NN=0
18 14 17 mpbid KMNKgcdN=1MNK=0M=0N=0
19 11 18 jca KMNKgcdN=1MNK=0M=0K=0N=0
20 19 ex KMNKgcdN=1MNK=0M=0K=0N=0
21 simpl3 KMNKgcdN=1MNN
22 gcdeq0 KNKgcdN=0K=0N=0
23 1 21 22 syl2anc KMNKgcdN=1MNKgcdN=0K=0N=0
24 20 23 sylibrd KMNKgcdN=1MNK=0M=0KgcdN=0
25 10 24 mtod KMNKgcdN=1MN¬K=0M=0
26 gcdn0cl KM¬K=0M=0KgcdM
27 1 2 25 26 syl21anc KMNKgcdN=1MNKgcdM
28 27 nnzd KMNKgcdN=1MNKgcdM
29 4 simprd KMNKgcdN=1MNKgcdMM
30 simprr KMNKgcdN=1MNMN
31 28 2 21 29 30 dvdstrd KMNKgcdN=1MNKgcdMN
32 10 23 mtbid KMNKgcdN=1MN¬K=0N=0
33 dvdslegcd KgcdMKN¬K=0N=0KgcdMKKgcdMNKgcdMKgcdN
34 28 1 21 32 33 syl31anc KMNKgcdN=1MNKgcdMKKgcdMNKgcdMKgcdN
35 5 31 34 mp2and KMNKgcdN=1MNKgcdMKgcdN
36 35 7 breqtrd KMNKgcdN=1MNKgcdM1
37 nnle1eq1 KgcdMKgcdM1KgcdM=1
38 27 37 syl KMNKgcdN=1MNKgcdM1KgcdM=1
39 36 38 mpbid KMNKgcdN=1MNKgcdM=1