| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrnval.1 |
|
| 2 |
|
rrndstprj1.1 |
|
| 3 |
|
simpll |
|
| 4 |
|
simprl |
|
| 5 |
4 1
|
eleqtrdi |
|
| 6 |
|
elmapi |
|
| 7 |
5 6
|
syl |
|
| 8 |
7
|
ffvelcdmda |
|
| 9 |
|
simprr |
|
| 10 |
9 1
|
eleqtrdi |
|
| 11 |
|
elmapi |
|
| 12 |
10 11
|
syl |
|
| 13 |
12
|
ffvelcdmda |
|
| 14 |
8 13
|
resubcld |
|
| 15 |
14
|
resqcld |
|
| 16 |
14
|
sqge0d |
|
| 17 |
|
fveq2 |
|
| 18 |
|
fveq2 |
|
| 19 |
17 18
|
oveq12d |
|
| 20 |
19
|
oveq1d |
|
| 21 |
|
simplr |
|
| 22 |
3 15 16 20 21
|
fsumge1 |
|
| 23 |
7 21
|
ffvelcdmd |
|
| 24 |
12 21
|
ffvelcdmd |
|
| 25 |
23 24
|
resubcld |
|
| 26 |
|
absresq |
|
| 27 |
25 26
|
syl |
|
| 28 |
3 15
|
fsumrecl |
|
| 29 |
3 15 16
|
fsumge0 |
|
| 30 |
|
resqrtth |
|
| 31 |
28 29 30
|
syl2anc |
|
| 32 |
22 27 31
|
3brtr4d |
|
| 33 |
25
|
recnd |
|
| 34 |
33
|
abscld |
|
| 35 |
28 29
|
resqrtcld |
|
| 36 |
33
|
absge0d |
|
| 37 |
28 29
|
sqrtge0d |
|
| 38 |
34 35 36 37
|
le2sqd |
|
| 39 |
32 38
|
mpbird |
|
| 40 |
2
|
remetdval |
|
| 41 |
23 24 40
|
syl2anc |
|
| 42 |
1
|
rrnmval |
|
| 43 |
42
|
3expb |
|
| 44 |
43
|
adantlr |
|
| 45 |
39 41 44
|
3brtr4d |
|