Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrxval.r | |
|
rrxbase.b | |
||
rrxplusgvscavalb.r | |
||
rrxplusgvscavalb.i | |
||
rrxplusgvscavalb.a | |
||
rrxplusgvscavalb.x | |
||
rrxplusgvscavalb.y | |
||
rrxplusgvscavalb.z | |
||
rrxplusgvscavalb.p | |
||
rrxplusgvscavalb.c | |
||
Assertion | rrxplusgvscavalb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxval.r | |
|
2 | rrxbase.b | |
|
3 | rrxplusgvscavalb.r | |
|
4 | rrxplusgvscavalb.i | |
|
5 | rrxplusgvscavalb.a | |
|
6 | rrxplusgvscavalb.x | |
|
7 | rrxplusgvscavalb.y | |
|
8 | rrxplusgvscavalb.z | |
|
9 | rrxplusgvscavalb.p | |
|
10 | rrxplusgvscavalb.c | |
|
11 | 1 | rrxval | |
12 | 4 11 | syl | |
13 | 12 | fveq2d | |
14 | 9 13 | eqtrid | |
15 | 12 | fveq2d | |
16 | 3 15 | eqtrid | |
17 | 16 | oveqd | |
18 | 16 | oveqd | |
19 | 14 17 18 | oveq123d | |
20 | 19 | eqeq2d | |
21 | eqid | |
|
22 | eqid | |
|
23 | 12 | fveq2d | |
24 | eqid | |
|
25 | 24 22 | tcphbas | |
26 | 23 2 25 | 3eqtr4g | |
27 | 6 26 | eleqtrd | |
28 | 8 26 | eleqtrd | |
29 | resrng | |
|
30 | srngring | |
|
31 | 29 30 | mp1i | |
32 | rebase | |
|
33 | eqid | |
|
34 | 24 33 | tcphvsca | |
35 | 34 | eqcomi | |
36 | remulr | |
|
37 | 7 26 | eleqtrd | |
38 | replusg | |
|
39 | eqid | |
|
40 | 24 39 | tchplusg | |
41 | 40 | eqcomi | |
42 | 21 22 4 27 28 31 32 5 35 36 37 38 41 10 | frlmvplusgscavalb | |
43 | 20 42 | bitrd | |