Metamath Proof Explorer


Theorem rrxplusgvscavalb

Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023)

Ref Expression
Hypotheses rrxval.r H=msup
rrxbase.b B=BaseH
rrxplusgvscavalb.r ˙=H
rrxplusgvscavalb.i φIV
rrxplusgvscavalb.a φA
rrxplusgvscavalb.x φXB
rrxplusgvscavalb.y φYB
rrxplusgvscavalb.z φZB
rrxplusgvscavalb.p ˙=+H
rrxplusgvscavalb.c φC
Assertion rrxplusgvscavalb φZ=A˙X˙C˙YiIZi=AXi+CYi

Proof

Step Hyp Ref Expression
1 rrxval.r H=msup
2 rrxbase.b B=BaseH
3 rrxplusgvscavalb.r ˙=H
4 rrxplusgvscavalb.i φIV
5 rrxplusgvscavalb.a φA
6 rrxplusgvscavalb.x φXB
7 rrxplusgvscavalb.y φYB
8 rrxplusgvscavalb.z φZB
9 rrxplusgvscavalb.p ˙=+H
10 rrxplusgvscavalb.c φC
11 1 rrxval IVH=toCPreHilfldfreeLModI
12 4 11 syl φH=toCPreHilfldfreeLModI
13 12 fveq2d φ+H=+toCPreHilfldfreeLModI
14 9 13 eqtrid φ˙=+toCPreHilfldfreeLModI
15 12 fveq2d φH=toCPreHilfldfreeLModI
16 3 15 eqtrid φ˙=toCPreHilfldfreeLModI
17 16 oveqd φA˙X=AtoCPreHilfldfreeLModIX
18 16 oveqd φC˙Y=CtoCPreHilfldfreeLModIY
19 14 17 18 oveq123d φA˙X˙C˙Y=AtoCPreHilfldfreeLModIX+toCPreHilfldfreeLModICtoCPreHilfldfreeLModIY
20 19 eqeq2d φZ=A˙X˙C˙YZ=AtoCPreHilfldfreeLModIX+toCPreHilfldfreeLModICtoCPreHilfldfreeLModIY
21 eqid fldfreeLModI=fldfreeLModI
22 eqid BasefldfreeLModI=BasefldfreeLModI
23 12 fveq2d φBaseH=BasetoCPreHilfldfreeLModI
24 eqid toCPreHilfldfreeLModI=toCPreHilfldfreeLModI
25 24 22 tcphbas BasefldfreeLModI=BasetoCPreHilfldfreeLModI
26 23 2 25 3eqtr4g φB=BasefldfreeLModI
27 6 26 eleqtrd φXBasefldfreeLModI
28 8 26 eleqtrd φZBasefldfreeLModI
29 resrng fld*-Ring
30 srngring fld*-RingfldRing
31 29 30 mp1i φfldRing
32 rebase =Basefld
33 eqid fldfreeLModI=fldfreeLModI
34 24 33 tcphvsca fldfreeLModI=toCPreHilfldfreeLModI
35 34 eqcomi toCPreHilfldfreeLModI=fldfreeLModI
36 remulr ×=fld
37 7 26 eleqtrd φYBasefldfreeLModI
38 replusg +=+fld
39 eqid +fldfreeLModI=+fldfreeLModI
40 24 39 tchplusg +fldfreeLModI=+toCPreHilfldfreeLModI
41 40 eqcomi +toCPreHilfldfreeLModI=+fldfreeLModI
42 21 22 4 27 28 31 32 5 35 36 37 38 41 10 frlmvplusgscavalb φZ=AtoCPreHilfldfreeLModIX+toCPreHilfldfreeLModICtoCPreHilfldfreeLModIYiIZi=AXi+CYi
43 20 42 bitrd φZ=A˙X˙C˙YiIZi=AXi+CYi