Metamath Proof Explorer


Theorem rrxplusgvscavalb

Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023)

Ref Expression
Hypotheses rrxval.r H = I
rrxbase.b B = Base H
rrxplusgvscavalb.r ˙ = H
rrxplusgvscavalb.i φ I V
rrxplusgvscavalb.a φ A
rrxplusgvscavalb.x φ X B
rrxplusgvscavalb.y φ Y B
rrxplusgvscavalb.z φ Z B
rrxplusgvscavalb.p ˙ = + H
rrxplusgvscavalb.c φ C
Assertion rrxplusgvscavalb φ Z = A ˙ X ˙ C ˙ Y i I Z i = A X i + C Y i

Proof

Step Hyp Ref Expression
1 rrxval.r H = I
2 rrxbase.b B = Base H
3 rrxplusgvscavalb.r ˙ = H
4 rrxplusgvscavalb.i φ I V
5 rrxplusgvscavalb.a φ A
6 rrxplusgvscavalb.x φ X B
7 rrxplusgvscavalb.y φ Y B
8 rrxplusgvscavalb.z φ Z B
9 rrxplusgvscavalb.p ˙ = + H
10 rrxplusgvscavalb.c φ C
11 1 rrxval I V H = toCPreHil fld freeLMod I
12 4 11 syl φ H = toCPreHil fld freeLMod I
13 12 fveq2d φ + H = + toCPreHil fld freeLMod I
14 9 13 syl5eq φ ˙ = + toCPreHil fld freeLMod I
15 12 fveq2d φ H = toCPreHil fld freeLMod I
16 3 15 syl5eq φ ˙ = toCPreHil fld freeLMod I
17 16 oveqd φ A ˙ X = A toCPreHil fld freeLMod I X
18 16 oveqd φ C ˙ Y = C toCPreHil fld freeLMod I Y
19 14 17 18 oveq123d φ A ˙ X ˙ C ˙ Y = A toCPreHil fld freeLMod I X + toCPreHil fld freeLMod I C toCPreHil fld freeLMod I Y
20 19 eqeq2d φ Z = A ˙ X ˙ C ˙ Y Z = A toCPreHil fld freeLMod I X + toCPreHil fld freeLMod I C toCPreHil fld freeLMod I Y
21 eqid fld freeLMod I = fld freeLMod I
22 eqid Base fld freeLMod I = Base fld freeLMod I
23 12 fveq2d φ Base H = Base toCPreHil fld freeLMod I
24 eqid toCPreHil fld freeLMod I = toCPreHil fld freeLMod I
25 24 22 tcphbas Base fld freeLMod I = Base toCPreHil fld freeLMod I
26 23 2 25 3eqtr4g φ B = Base fld freeLMod I
27 6 26 eleqtrd φ X Base fld freeLMod I
28 8 26 eleqtrd φ Z Base fld freeLMod I
29 recrng fld *-Ring
30 srngring fld *-Ring fld Ring
31 29 30 mp1i φ fld Ring
32 rebase = Base fld
33 eqid fld freeLMod I = fld freeLMod I
34 24 33 tcphvsca fld freeLMod I = toCPreHil fld freeLMod I
35 34 eqcomi toCPreHil fld freeLMod I = fld freeLMod I
36 remulr × = fld
37 7 26 eleqtrd φ Y Base fld freeLMod I
38 replusg + = + fld
39 eqid + fld freeLMod I = + fld freeLMod I
40 24 39 tchplusg + fld freeLMod I = + toCPreHil fld freeLMod I
41 40 eqcomi + toCPreHil fld freeLMod I = + fld freeLMod I
42 21 22 4 27 28 31 32 5 35 36 37 38 41 10 frlmvplusgscavalb φ Z = A toCPreHil fld freeLMod I X + toCPreHil fld freeLMod I C toCPreHil fld freeLMod I Y i I Z i = A X i + C Y i
43 20 42 bitrd φ Z = A ˙ X ˙ C ˙ Y i I Z i = A X i + C Y i