Metamath Proof Explorer


Theorem rusgrnumwrdl2

Description: In a k-regular simple graph, the number of edges resp. walks of length 1 (represented as words of length 2) starting at a fixed vertex is k. (Contributed by Alexander van der Vekens, 28-Jul-2018) (Revised by AV, 6-May-2021)

Ref Expression
Hypothesis rusgrnumwrdl2.v V=VtxG
Assertion rusgrnumwrdl2 GRegUSGraphKPVwWordV|w=2w0=Pw0w1EdgG=K

Proof

Step Hyp Ref Expression
1 rusgrnumwrdl2.v V=VtxG
2 1 fvexi VV
3 2 wrdexi WordVV
4 3 rabex wWordV|w=2w0=Pw0w1EdgGV
5 2 a1i GRegUSGraphKVV
6 wrd2f1tovbij VVPVff:wWordV|w=2w0=Pw0w1EdgG1-1 ontosV|PsEdgG
7 5 6 sylan GRegUSGraphKPVff:wWordV|w=2w0=Pw0w1EdgG1-1 ontosV|PsEdgG
8 hasheqf1oi wWordV|w=2w0=Pw0w1EdgGVff:wWordV|w=2w0=Pw0w1EdgG1-1 ontosV|PsEdgGwWordV|w=2w0=Pw0w1EdgG=sV|PsEdgG
9 4 7 8 mpsyl GRegUSGraphKPVwWordV|w=2w0=Pw0w1EdgG=sV|PsEdgG
10 1 rusgrpropadjvtx GRegUSGraphKGUSGraphK0*pVsV|psEdgG=K
11 preq1 p=Pps=Ps
12 11 eleq1d p=PpsEdgGPsEdgG
13 12 rabbidv p=PsV|psEdgG=sV|PsEdgG
14 13 fveqeq2d p=PsV|psEdgG=KsV|PsEdgG=K
15 14 rspccv pVsV|psEdgG=KPVsV|PsEdgG=K
16 15 3ad2ant3 GUSGraphK0*pVsV|psEdgG=KPVsV|PsEdgG=K
17 10 16 syl GRegUSGraphKPVsV|PsEdgG=K
18 17 imp GRegUSGraphKPVsV|PsEdgG=K
19 9 18 eqtrd GRegUSGraphKPVwWordV|w=2w0=Pw0w1EdgG=K