Metamath Proof Explorer


Theorem s3sndisj

Description: The singletons consisting of length 3 strings which have distinct third symbols are disjunct. (Contributed by AV, 17-May-2021)

Ref Expression
Assertion s3sndisj AXBYDisjcZ⟨“ABc”⟩

Proof

Step Hyp Ref Expression
1 orc c=dc=d⟨“ABc”⟩⟨“ABd”⟩=
2 1 a1d c=dAXBYcZdZc=d⟨“ABc”⟩⟨“ABd”⟩=
3 s3cli ⟨“ABc”⟩WordV
4 elex AXAV
5 elex BYBV
6 4 5 anim12i AXBYAVBV
7 elex dZdV
8 7 adantl cZdZdV
9 6 8 anim12i AXBYcZdZAVBVdV
10 df-3an AVBVdVAVBVdV
11 9 10 sylibr AXBYcZdZAVBVdV
12 eqwrds3 ⟨“ABc”⟩WordVAVBVdV⟨“ABc”⟩=⟨“ABd”⟩⟨“ABc”⟩=3⟨“ABc”⟩0=A⟨“ABc”⟩1=B⟨“ABc”⟩2=d
13 3 11 12 sylancr AXBYcZdZ⟨“ABc”⟩=⟨“ABd”⟩⟨“ABc”⟩=3⟨“ABc”⟩0=A⟨“ABc”⟩1=B⟨“ABc”⟩2=d
14 s3fv2 cV⟨“ABc”⟩2=c
15 14 elv ⟨“ABc”⟩2=c
16 simp3 ⟨“ABc”⟩0=A⟨“ABc”⟩1=B⟨“ABc”⟩2=d⟨“ABc”⟩2=d
17 15 16 eqtr3id ⟨“ABc”⟩0=A⟨“ABc”⟩1=B⟨“ABc”⟩2=dc=d
18 17 adantl ⟨“ABc”⟩=3⟨“ABc”⟩0=A⟨“ABc”⟩1=B⟨“ABc”⟩2=dc=d
19 13 18 syl6bi AXBYcZdZ⟨“ABc”⟩=⟨“ABd”⟩c=d
20 19 con3rr3 ¬c=dAXBYcZdZ¬⟨“ABc”⟩=⟨“ABd”⟩
21 20 imp ¬c=dAXBYcZdZ¬⟨“ABc”⟩=⟨“ABd”⟩
22 21 neqned ¬c=dAXBYcZdZ⟨“ABc”⟩⟨“ABd”⟩
23 disjsn2 ⟨“ABc”⟩⟨“ABd”⟩⟨“ABc”⟩⟨“ABd”⟩=
24 22 23 syl ¬c=dAXBYcZdZ⟨“ABc”⟩⟨“ABd”⟩=
25 24 olcd ¬c=dAXBYcZdZc=d⟨“ABc”⟩⟨“ABd”⟩=
26 25 ex ¬c=dAXBYcZdZc=d⟨“ABc”⟩⟨“ABd”⟩=
27 2 26 pm2.61i AXBYcZdZc=d⟨“ABc”⟩⟨“ABd”⟩=
28 27 ralrimivva AXBYcZdZc=d⟨“ABc”⟩⟨“ABd”⟩=
29 eqidd c=dA=A
30 eqidd c=dB=B
31 id c=dc=d
32 29 30 31 s3eqd c=d⟨“ABc”⟩=⟨“ABd”⟩
33 32 sneqd c=d⟨“ABc”⟩=⟨“ABd”⟩
34 33 disjor DisjcZ⟨“ABc”⟩cZdZc=d⟨“ABc”⟩⟨“ABd”⟩=
35 28 34 sylibr AXBYDisjcZ⟨“ABc”⟩