Metamath Proof Explorer


Theorem s7f1o

Description: A length 7 word with mutually different symbols is a one-to-one function onto the set of the symbols. (Contributed by AV, 2-Aug-2025)

Ref Expression
Assertion s7f1o A V B V C V D V E V F V G V A B A C A D A E A F A G B C B D B E B F B G C D C E C F C G D E D F D G E F E G F G K = ⟨“ ABCDEFG ”⟩ K : 0 ..^ 7 1-1 onto A B C D E F G

Proof

Step Hyp Ref Expression
1 s7cli ⟨“ ABCDEFG ”⟩ Word V
2 wrdf ⟨“ ABCDEFG ”⟩ Word V ⟨“ ABCDEFG ”⟩ : 0 ..^ ⟨“ ABCDEFG ”⟩ V
3 s7len ⟨“ ABCDEFG ”⟩ = 7
4 3 oveq2i 0 ..^ ⟨“ ABCDEFG ”⟩ = 0 ..^ 7
5 4 feq2i ⟨“ ABCDEFG ”⟩ : 0 ..^ ⟨“ ABCDEFG ”⟩ V ⟨“ ABCDEFG ”⟩ : 0 ..^ 7 V
6 ffn ⟨“ ABCDEFG ”⟩ : 0 ..^ 7 V ⟨“ ABCDEFG ”⟩ Fn 0 ..^ 7
7 5 6 sylbi ⟨“ ABCDEFG ”⟩ : 0 ..^ ⟨“ ABCDEFG ”⟩ V ⟨“ ABCDEFG ”⟩ Fn 0 ..^ 7
8 1 2 7 mp2b ⟨“ ABCDEFG ”⟩ Fn 0 ..^ 7
9 8 a1i A V B V C V D V E V F V G V ⟨“ ABCDEFG ”⟩ Fn 0 ..^ 7
10 dffn4 ⟨“ ABCDEFG ”⟩ Fn 0 ..^ 7 ⟨“ ABCDEFG ”⟩ : 0 ..^ 7 onto ran ⟨“ ABCDEFG ”⟩
11 9 10 sylib A V B V C V D V E V F V G V ⟨“ ABCDEFG ”⟩ : 0 ..^ 7 onto ran ⟨“ ABCDEFG ”⟩
12 simp1 A V B V C V A V
13 12 3ad2ant1 A V B V C V D V E V F V G V A V
14 simp2 A V B V C V B V
15 14 3ad2ant1 A V B V C V D V E V F V G V B V
16 simp3 A V B V C V C V
17 16 3ad2ant1 A V B V C V D V E V F V G V C V
18 simp2 A V B V C V D V E V F V G V D V
19 simp1 E V F V G V E V
20 19 3ad2ant3 A V B V C V D V E V F V G V E V
21 simp2 E V F V G V F V
22 21 3ad2ant3 A V B V C V D V E V F V G V F V
23 simp3 E V F V G V G V
24 23 3ad2ant3 A V B V C V D V E V F V G V G V
25 13 15 17 18 20 22 24 s7rn A V B V C V D V E V F V G V ran ⟨“ ABCDEFG ”⟩ = A B C D E F G
26 foeq3 ran ⟨“ ABCDEFG ”⟩ = A B C D E F G ⟨“ ABCDEFG ”⟩ : 0 ..^ 7 onto ran ⟨“ ABCDEFG ”⟩ ⟨“ ABCDEFG ”⟩ : 0 ..^ 7 onto A B C D E F G
27 25 26 syl A V B V C V D V E V F V G V ⟨“ ABCDEFG ”⟩ : 0 ..^ 7 onto ran ⟨“ ABCDEFG ”⟩ ⟨“ ABCDEFG ”⟩ : 0 ..^ 7 onto A B C D E F G
28 11 27 mpbid A V B V C V D V E V F V G V ⟨“ ABCDEFG ”⟩ : 0 ..^ 7 onto A B C D E F G
29 28 adantr A V B V C V D V E V F V G V A B A C A D A E A F A G B C B D B E B F B G C D C E C F C G D E D F D G E F E G F G ⟨“ ABCDEFG ”⟩ : 0 ..^ 7 onto A B C D E F G
30 7nn0 7 0
31 hashfzo0 7 0 0 ..^ 7 = 7
32 30 31 ax-mp 0 ..^ 7 = 7
33 hash7g A V B V C V D V E V F V G V A B A C A D A E A F A G B C B D B E B F B G C D C E C F C G D E D F D G E F E G F G A B C D E F G = 7
34 32 33 eqtr4id A V B V C V D V E V F V G V A B A C A D A E A F A G B C B D B E B F B G C D C E C F C G D E D F D G E F E G F G 0 ..^ 7 = A B C D E F G
35 fzofi 0 ..^ 7 Fin
36 tpfi A B C Fin
37 snfi D Fin
38 unfi A B C Fin D Fin A B C D Fin
39 36 37 38 mp2an A B C D Fin
40 tpfi E F G Fin
41 unfi A B C D Fin E F G Fin A B C D E F G Fin
42 39 40 41 mp2an A B C D E F G Fin
43 hashen 0 ..^ 7 Fin A B C D E F G Fin 0 ..^ 7 = A B C D E F G 0 ..^ 7 A B C D E F G
44 35 42 43 mp2an 0 ..^ 7 = A B C D E F G 0 ..^ 7 A B C D E F G
45 34 44 sylib A V B V C V D V E V F V G V A B A C A D A E A F A G B C B D B E B F B G C D C E C F C G D E D F D G E F E G F G 0 ..^ 7 A B C D E F G
46 42 a1i A V B V C V D V E V F V G V A B A C A D A E A F A G B C B D B E B F B G C D C E C F C G D E D F D G E F E G F G A B C D E F G Fin
47 fofinf1o ⟨“ ABCDEFG ”⟩ : 0 ..^ 7 onto A B C D E F G 0 ..^ 7 A B C D E F G A B C D E F G Fin ⟨“ ABCDEFG ”⟩ : 0 ..^ 7 1-1 onto A B C D E F G
48 29 45 46 47 syl3anc A V B V C V D V E V F V G V A B A C A D A E A F A G B C B D B E B F B G C D C E C F C G D E D F D G E F E G F G ⟨“ ABCDEFG ”⟩ : 0 ..^ 7 1-1 onto A B C D E F G
49 f1oeq1 K = ⟨“ ABCDEFG ”⟩ K : 0 ..^ 7 1-1 onto A B C D E F G ⟨“ ABCDEFG ”⟩ : 0 ..^ 7 1-1 onto A B C D E F G
50 48 49 syl5ibrcom A V B V C V D V E V F V G V A B A C A D A E A F A G B C B D B E B F B G C D C E C F C G D E D F D G E F E G F G K = ⟨“ ABCDEFG ”⟩ K : 0 ..^ 7 1-1 onto A B C D E F G