Step |
Hyp |
Ref |
Expression |
1 |
|
tpfi |
|
2 |
|
snfi |
|
3 |
|
unfi |
|
4 |
1 2 3
|
mp2an |
|
5 |
|
tpfi |
|
6 |
|
simpr1 |
|
7 |
|
simpr1 |
|
8 |
|
simpr1 |
|
9 |
6 7 8
|
3anim123i |
|
10 |
9
|
adantr |
|
11 |
|
simpr2 |
|
12 |
|
simpr2 |
|
13 |
|
simpr2 |
|
14 |
11 12 13
|
3anim123i |
|
15 |
14
|
adantr |
|
16 |
|
simp1r3 |
|
17 |
16
|
adantr |
|
18 |
|
simp2r3 |
|
19 |
18
|
adantr |
|
20 |
|
simp3r3 |
|
21 |
20
|
adantr |
|
22 |
|
disjtp2 |
|
23 |
10 15 17 19 21 22
|
syl113anc |
|
24 |
23
|
adantl |
|
25 |
|
incom |
|
26 |
|
necom |
|
27 |
|
necom |
|
28 |
|
necom |
|
29 |
26 27 28
|
3anbi123i |
|
30 |
29
|
biimpi |
|
31 |
30
|
adantr |
|
32 |
31
|
adantl |
|
33 |
|
disjtpsn |
|
34 |
32 33
|
syl |
|
35 |
34
|
adantl |
|
36 |
25 35
|
eqtrid |
|
37 |
24 36
|
jca |
|
38 |
|
undisj1 |
|
39 |
37 38
|
sylib |
|
40 |
|
hashun |
|
41 |
4 5 39 40
|
mp3an12i |
|
42 |
|
simp3 |
|
43 |
42
|
adantr |
|
44 |
|
simplr |
|
45 |
|
simpl |
|
46 |
43 44 45
|
3anim123i |
|
47 |
46
|
adantr |
|
48 |
|
disjtpsn |
|
49 |
47 48
|
syl |
|
50 |
49
|
adantl |
|
51 |
|
hashun |
|
52 |
1 2 50 51
|
mp3an12i |
|
53 |
|
simp1l1 |
|
54 |
|
simp2ll |
|
55 |
|
simp2 |
|
56 |
55
|
necomd |
|
57 |
56
|
adantr |
|
58 |
57
|
3ad2ant1 |
|
59 |
53 54 58
|
3jca |
|
60 |
59
|
adantr |
|
61 |
60
|
adantl |
|
62 |
|
hashtpg |
|
63 |
62
|
3ad2ant1 |
|
64 |
63
|
adantr |
|
65 |
61 64
|
mpbid |
|
66 |
|
hashsng |
|
67 |
66
|
3ad2ant2 |
|
68 |
67
|
adantr |
|
69 |
65 68
|
oveq12d |
|
70 |
52 69
|
eqtrd |
|
71 |
|
simp1 |
|
72 |
|
simp3 |
|
73 |
|
simp2 |
|
74 |
73
|
necomd |
|
75 |
71 72 74
|
3jca |
|
76 |
75
|
adantl |
|
77 |
76
|
adantl |
|
78 |
77
|
adantl |
|
79 |
|
hashtpg |
|
80 |
79
|
3ad2ant3 |
|
81 |
80
|
adantr |
|
82 |
78 81
|
mpbid |
|
83 |
70 82
|
oveq12d |
|
84 |
|
3p1e4 |
|
85 |
84
|
oveq1i |
|
86 |
|
4p3e7 |
|
87 |
85 86
|
eqtri |
|
88 |
83 87
|
eqtrdi |
|
89 |
41 88
|
eqtrd |
|