Metamath Proof Explorer


Theorem sadval

Description: The full adder sequence is the half adder function applied to the inputs and the carry sequence. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Hypotheses sadval.a φA0
sadval.b φB0
sadval.c C=seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1
sadcp1.n φN0
Assertion sadval φNAsaddBhaddNANBCN

Proof

Step Hyp Ref Expression
1 sadval.a φA0
2 sadval.b φB0
3 sadval.c C=seq0c2𝑜,m0ifcaddmAmBc1𝑜n0ifn=0n1
4 sadcp1.n φN0
5 1 2 3 sadfval φAsaddB=k0|haddkAkBCk
6 5 eleq2d φNAsaddBNk0|haddkAkBCk
7 eleq1 k=NkANA
8 eleq1 k=NkBNB
9 fveq2 k=NCk=CN
10 9 eleq2d k=NCkCN
11 7 8 10 hadbi123d k=NhaddkAkBCkhaddNANBCN
12 11 elrab3 N0Nk0|haddkAkBCkhaddNANBCN
13 4 12 syl φNk0|haddkAkBCkhaddNANBCN
14 6 13 bitrd φNAsaddBhaddNANBCN