Metamath Proof Explorer


Theorem salgenn0

Description: The set used in the definition of the generated sigma-algebra, is not empty. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Assertion salgenn0 XVsSAlg|s=XXs

Proof

Step Hyp Ref Expression
1 uniexg XVXV
2 pwsal XV𝒫XSAlg
3 1 2 syl XV𝒫XSAlg
4 unipw 𝒫X=X
5 4 a1i XV𝒫X=X
6 pwuni X𝒫X
7 6 a1i XVX𝒫X
8 5 7 jca XV𝒫X=XX𝒫X
9 3 8 jca XV𝒫XSAlg𝒫X=XX𝒫X
10 unieq s=𝒫Xs=𝒫X
11 10 eqeq1d s=𝒫Xs=X𝒫X=X
12 sseq2 s=𝒫XXsX𝒫X
13 11 12 anbi12d s=𝒫Xs=XXs𝒫X=XX𝒫X
14 13 elrab 𝒫XsSAlg|s=XXs𝒫XSAlg𝒫X=XX𝒫X
15 9 14 sylibr XV𝒫XsSAlg|s=XXs
16 15 ne0d XVsSAlg|s=XXs