Description: The satisfaction predicate as function over wff codes in the model M and the binary relation E on M . (Contributed by AV, 14-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | satf | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sat | |
|
2 | 1 | a1i | |
3 | oveq1 | |
|
4 | 3 | adantr | |
5 | 4 | difeq1d | |
6 | 5 | eqeq2d | |
7 | 6 | anbi2d | |
8 | 7 | rexbidv | |
9 | simpl | |
|
10 | 9 | raleqdv | |
11 | 4 10 | rabeqbidv | |
12 | 11 | eqeq2d | |
13 | 12 | anbi2d | |
14 | 13 | rexbidv | |
15 | 8 14 | orbi12d | |
16 | 15 | rexbidv | |
17 | 16 | opabbidv | |
18 | 17 | uneq2d | |
19 | 18 | mpteq2dv | |
20 | breq | |
|
21 | 20 | adantl | |
22 | 4 21 | rabeqbidv | |
23 | 22 | eqeq2d | |
24 | 23 | anbi2d | |
25 | 24 | 2rexbidv | |
26 | 25 | opabbidv | |
27 | rdgeq12 | |
|
28 | 19 26 27 | syl2anc | |
29 | 28 | reseq1d | |
30 | 29 | adantl | |
31 | elex | |
|
32 | 31 | adantr | |
33 | elex | |
|
34 | 33 | adantl | |
35 | rdgfun | |
|
36 | omex | |
|
37 | 36 | sucex | |
38 | 37 | a1i | |
39 | resfunexg | |
|
40 | 35 38 39 | sylancr | |
41 | 2 30 32 34 40 | ovmpod | |