Metamath Proof Explorer


Theorem satf

Description: The satisfaction predicate as function over wff codes in the model M and the binary relation E on M . (Contributed by AV, 14-Sep-2023)

Ref Expression
Assertion satf MVEWMSatE=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucω

Proof

Step Hyp Ref Expression
1 df-sat Sat=mV,eVrecfVfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2nduxy|iωjωx=i𝑔jy=amω|aieajsucω
2 1 a1i MVEWSat=mV,eVrecfVfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2nduxy|iωjωx=i𝑔jy=amω|aieajsucω
3 oveq1 m=Mmω=Mω
4 3 adantr m=Me=Emω=Mω
5 4 difeq1d m=Me=Emω2ndu2ndv=Mω2ndu2ndv
6 5 eqeq2d m=Me=Ey=mω2ndu2ndvy=Mω2ndu2ndv
7 6 anbi2d m=Me=Ex=1stu𝑔1stvy=mω2ndu2ndvx=1stu𝑔1stvy=Mω2ndu2ndv
8 7 rexbidv m=Me=Evfx=1stu𝑔1stvy=mω2ndu2ndvvfx=1stu𝑔1stvy=Mω2ndu2ndv
9 simpl m=Me=Em=M
10 9 raleqdv m=Me=Ezmizaωi2nduzMizaωi2ndu
11 4 10 rabeqbidv m=Me=Eamω|zmizaωi2ndu=aMω|zMizaωi2ndu
12 11 eqeq2d m=Me=Ey=amω|zmizaωi2nduy=aMω|zMizaωi2ndu
13 12 anbi2d m=Me=Ex=𝑔i1stuy=amω|zmizaωi2ndux=𝑔i1stuy=aMω|zMizaωi2ndu
14 13 rexbidv m=Me=Eiωx=𝑔i1stuy=amω|zmizaωi2nduiωx=𝑔i1stuy=aMω|zMizaωi2ndu
15 8 14 orbi12d m=Me=Evfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2nduvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
16 15 rexbidv m=Me=Eufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2nduufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
17 16 opabbidv m=Me=Exy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2ndu=xy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
18 17 uneq2d m=Me=Efxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2ndu=fxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
19 18 mpteq2dv m=Me=EfVfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2ndu=fVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
20 breq e=EaieajaiEaj
21 20 adantl m=Me=EaieajaiEaj
22 4 21 rabeqbidv m=Me=Eamω|aieaj=aMω|aiEaj
23 22 eqeq2d m=Me=Ey=amω|aieajy=aMω|aiEaj
24 23 anbi2d m=Me=Ex=i𝑔jy=amω|aieajx=i𝑔jy=aMω|aiEaj
25 24 2rexbidv m=Me=Eiωjωx=i𝑔jy=amω|aieajiωjωx=i𝑔jy=aMω|aiEaj
26 25 opabbidv m=Me=Exy|iωjωx=i𝑔jy=amω|aieaj=xy|iωjωx=i𝑔jy=aMω|aiEaj
27 rdgeq12 fVfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2ndu=fVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=amω|aieaj=xy|iωjωx=i𝑔jy=aMω|aiEajrecfVfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2nduxy|iωjωx=i𝑔jy=amω|aieaj=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEaj
28 19 26 27 syl2anc m=Me=ErecfVfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2nduxy|iωjωx=i𝑔jy=amω|aieaj=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEaj
29 28 reseq1d m=Me=ErecfVfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2nduxy|iωjωx=i𝑔jy=amω|aieajsucω=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucω
30 29 adantl MVEWm=Me=ErecfVfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2nduxy|iωjωx=i𝑔jy=amω|aieajsucω=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucω
31 elex MVMV
32 31 adantr MVEWMV
33 elex EWEV
34 33 adantl MVEWEV
35 rdgfun FunrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEaj
36 omex ωV
37 36 sucex sucωV
38 37 a1i MVEWsucωV
39 resfunexg FunrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucωVrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucωV
40 35 38 39 sylancr MVEWrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucωV
41 2 30 32 34 40 ovmpod MVEWMSatE=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucω