Metamath Proof Explorer


Theorem satf0suc

Description: The value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation at a successor. (Contributed by AV, 19-Sep-2023)

Ref Expression
Hypothesis satf0suc.s S=Sat
Assertion satf0suc NωSsucN=SNxy|y=uSNvSNx=1stu𝑔1stviωx=𝑔i1stu

Proof

Step Hyp Ref Expression
1 satf0suc.s S=Sat
2 1 fveq1i SsucN=SatsucN
3 2 a1i NωSsucN=SatsucN
4 omsucelsucb NωsucNsucω
5 satf0sucom sucNsucωSatsucN=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucN
6 4 5 sylbi NωSatsucN=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucN
7 nnon NωNOn
8 rdgsuc NOnrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucN=fVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN
9 7 8 syl NωrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucN=fVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN
10 elelsuc NωNsucω
11 satf0sucom NsucωSatN=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN
12 10 11 syl NωSatN=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN
13 1 eqcomi Sat=S
14 13 fveq1i SatN=SN
15 12 14 eqtr3di NωrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN=SN
16 15 fveq2d NωfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1sturecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jN=fVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuSN
17 eqidd NωfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stu=fVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stu
18 id f=SNf=SN
19 rexeq f=SNvfx=1stu𝑔1stvvSNx=1stu𝑔1stv
20 19 orbi1d f=SNvfx=1stu𝑔1stviωx=𝑔i1stuvSNx=1stu𝑔1stviωx=𝑔i1stu
21 20 rexeqbi1dv f=SNufvfx=1stu𝑔1stviωx=𝑔i1stuuSNvSNx=1stu𝑔1stviωx=𝑔i1stu
22 21 anbi2d f=SNy=ufvfx=1stu𝑔1stviωx=𝑔i1stuy=uSNvSNx=1stu𝑔1stviωx=𝑔i1stu
23 22 opabbidv f=SNxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stu=xy|y=uSNvSNx=1stu𝑔1stviωx=𝑔i1stu
24 18 23 uneq12d f=SNfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stu=SNxy|y=uSNvSNx=1stu𝑔1stviωx=𝑔i1stu
25 24 adantl Nωf=SNfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stu=SNxy|y=uSNvSNx=1stu𝑔1stviωx=𝑔i1stu
26 fvex SNV
27 26 a1i NωSNV
28 omex ωV
29 satf0suclem SNVSNVωVxy|y=uSNvSNx=1stu𝑔1stviωx=𝑔i1stuV
30 26 26 28 29 mp3an xy|y=uSNvSNx=1stu𝑔1stviωx=𝑔i1stuV
31 26 30 unex SNxy|y=uSNvSNx=1stu𝑔1stviωx=𝑔i1stuV
32 31 a1i NωSNxy|y=uSNvSNx=1stu𝑔1stviωx=𝑔i1stuV
33 17 25 27 32 fvmptd NωfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuSN=SNxy|y=uSNvSNx=1stu𝑔1stviωx=𝑔i1stu
34 9 16 33 3eqtrd NωrecfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucN=SNxy|y=uSNvSNx=1stu𝑔1stviωx=𝑔i1stu
35 3 6 34 3eqtrd NωSsucN=SNxy|y=uSNvSNx=1stu𝑔1stviωx=𝑔i1stu