Metamath Proof Explorer


Theorem satf0suclem

Description: Lemma for satf0suc , sat1el2xp and fmlasuc0 . (Contributed by AV, 19-Sep-2023)

Ref Expression
Assertion satf0suclem XUYVZWxy|y=uXvYx=BwZx=CV

Proof

Step Hyp Ref Expression
1 peano1 ω
2 eleq1 y=yωω
3 1 2 mpbiri y=yω
4 3 adantr y=uXvYx=BwZx=Cyω
5 4 pm4.71ri y=uXvYx=BwZx=Cyωy=uXvYx=BwZx=C
6 5 opabbii xy|y=uXvYx=BwZx=C=xy|yωy=uXvYx=BwZx=C
7 omex ωV
8 7 a1i XUYVZWωV
9 simp1 XUYVZWXU
10 unab x|vYx=Bx|wZx=C=x|vYx=BwZx=C
11 abrexexg YVx|vYx=BV
12 11 3ad2ant2 XUYVZWx|vYx=BV
13 abrexexg ZWx|wZx=CV
14 13 3ad2ant3 XUYVZWx|wZx=CV
15 unexg x|vYx=BVx|wZx=CVx|vYx=Bx|wZx=CV
16 12 14 15 syl2anc XUYVZWx|vYx=Bx|wZx=CV
17 10 16 eqeltrrid XUYVZWx|vYx=BwZx=CV
18 17 ralrimivw XUYVZWuXx|vYx=BwZx=CV
19 abrexex2g XUuXx|vYx=BwZx=CVx|uXvYx=BwZx=CV
20 9 18 19 syl2anc XUYVZWx|uXvYx=BwZx=CV
21 20 adantr XUYVZWyωx|uXvYx=BwZx=CV
22 8 21 opabex3rd XUYVZWxy|yωuXvYx=BwZx=CV
23 simpr y=uXvYx=BwZx=CuXvYx=BwZx=C
24 23 anim2i yωy=uXvYx=BwZx=CyωuXvYx=BwZx=C
25 24 ssopab2i xy|yωy=uXvYx=BwZx=Cxy|yωuXvYx=BwZx=C
26 25 a1i XUYVZWxy|yωy=uXvYx=BwZx=Cxy|yωuXvYx=BwZx=C
27 22 26 ssexd XUYVZWxy|yωy=uXvYx=BwZx=CV
28 6 27 eqeltrid XUYVZWxy|y=uXvYx=BwZx=CV