Description: Lemma for satf0suc , sat1el2xp and fmlasuc0 . (Contributed by AV, 19-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | satf0suclem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 | |
|
2 | eleq1 | |
|
3 | 1 2 | mpbiri | |
4 | 3 | adantr | |
5 | 4 | pm4.71ri | |
6 | 5 | opabbii | |
7 | omex | |
|
8 | 7 | a1i | |
9 | simp1 | |
|
10 | unab | |
|
11 | abrexexg | |
|
12 | 11 | 3ad2ant2 | |
13 | abrexexg | |
|
14 | 13 | 3ad2ant3 | |
15 | unexg | |
|
16 | 12 14 15 | syl2anc | |
17 | 10 16 | eqeltrrid | |
18 | 17 | ralrimivw | |
19 | abrexex2g | |
|
20 | 9 18 19 | syl2anc | |
21 | 20 | adantr | |
22 | 8 21 | opabex3rd | |
23 | simpr | |
|
24 | 23 | anim2i | |
25 | 24 | ssopab2i | |
26 | 25 | a1i | |
27 | 22 26 | ssexd | |
28 | 6 27 | eqeltrid | |