Metamath Proof Explorer


Theorem satfrel

Description: The value of the satisfaction predicate as function over wff codes at a natural number is a relation. (Contributed by AV, 12-Oct-2023)

Ref Expression
Assertion satfrel MVEWNωRelMSatEN

Proof

Step Hyp Ref Expression
1 fveq2 a=MSatEa=MSatE
2 1 releqd a=RelMSatEaRelMSatE
3 2 imbi2d a=MVEWRelMSatEaMVEWRelMSatE
4 fveq2 a=bMSatEa=MSatEb
5 4 releqd a=bRelMSatEaRelMSatEb
6 5 imbi2d a=bMVEWRelMSatEaMVEWRelMSatEb
7 fveq2 a=sucbMSatEa=MSatEsucb
8 7 releqd a=sucbRelMSatEaRelMSatEsucb
9 8 imbi2d a=sucbMVEWRelMSatEaMVEWRelMSatEsucb
10 fveq2 a=NMSatEa=MSatEN
11 10 releqd a=NRelMSatEaRelMSatEN
12 11 imbi2d a=NMVEWRelMSatEaMVEWRelMSatEN
13 relopabv Relxy|iωjωx=i𝑔jy=aMω|aiEaj
14 eqid MSatE=MSatE
15 14 satfv0 MVEWMSatE=xy|iωjωx=i𝑔jy=aMω|aiEaj
16 15 releqd MVEWRelMSatERelxy|iωjωx=i𝑔jy=aMω|aiEaj
17 13 16 mpbiri MVEWRelMSatE
18 pm2.27 MVEWMVEWRelMSatEbRelMSatEb
19 simpr MVEWbωRelMSatEbRelMSatEb
20 relopabv Relxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
21 relun RelMSatEbxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduRelMSatEbRelxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
22 19 20 21 sylanblrc MVEWbωRelMSatEbRelMSatEbxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
23 14 satfvsuc MVEWbωMSatEsucb=MSatEbxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
24 23 ad4ant123 MVEWbωRelMSatEbMSatEsucb=MSatEbxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
25 24 releqd MVEWbωRelMSatEbRelMSatEsucbRelMSatEbxy|uMSatEbvMSatEbx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
26 22 25 mpbird MVEWbωRelMSatEbRelMSatEsucb
27 26 exp31 MVEWbωRelMSatEbRelMSatEsucb
28 27 com23 MVEWRelMSatEbbωRelMSatEsucb
29 18 28 syld MVEWMVEWRelMSatEbbωRelMSatEsucb
30 29 com13 bωMVEWRelMSatEbMVEWRelMSatEsucb
31 3 6 9 12 17 30 finds NωMVEWRelMSatEN
32 31 com12 MVEWNωRelMSatEN
33 32 3impia MVEWNωRelMSatEN