Description: The value of the satisfaction predicate as function over wff codes at a natural number is a relation. (Contributed by AV, 12-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | satfrel | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |
|
2 | 1 | releqd | |
3 | 2 | imbi2d | |
4 | fveq2 | |
|
5 | 4 | releqd | |
6 | 5 | imbi2d | |
7 | fveq2 | |
|
8 | 7 | releqd | |
9 | 8 | imbi2d | |
10 | fveq2 | |
|
11 | 10 | releqd | |
12 | 11 | imbi2d | |
13 | relopabv | |
|
14 | eqid | |
|
15 | 14 | satfv0 | |
16 | 15 | releqd | |
17 | 13 16 | mpbiri | |
18 | pm2.27 | |
|
19 | simpr | |
|
20 | relopabv | |
|
21 | relun | |
|
22 | 19 20 21 | sylanblrc | |
23 | 14 | satfvsuc | |
24 | 23 | ad4ant123 | |
25 | 24 | releqd | |
26 | 22 25 | mpbird | |
27 | 26 | exp31 | |
28 | 27 | com23 | |
29 | 18 28 | syld | |
30 | 29 | com13 | |
31 | 3 6 9 12 17 30 | finds | |
32 | 31 | com12 | |
33 | 32 | 3impia | |