Metamath Proof Explorer


Theorem scmatrngiso

Description: There is a ring isomorphism from a ring to the ring of scalar matrices over this ring with positive dimension. (Contributed by AV, 29-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K = Base R
scmatrhmval.a A = N Mat R
scmatrhmval.o 1 ˙ = 1 A
scmatrhmval.t ˙ = A
scmatrhmval.f F = x K x ˙ 1 ˙
scmatrhmval.c C = N ScMat R
scmatghm.s S = A 𝑠 C
Assertion scmatrngiso N Fin N R Ring F R RingIso S

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K = Base R
2 scmatrhmval.a A = N Mat R
3 scmatrhmval.o 1 ˙ = 1 A
4 scmatrhmval.t ˙ = A
5 scmatrhmval.f F = x K x ˙ 1 ˙
6 scmatrhmval.c C = N ScMat R
7 scmatghm.s S = A 𝑠 C
8 1 2 3 4 5 6 7 scmatrhm N Fin R Ring F R RingHom S
9 8 3adant2 N Fin N R Ring F R RingHom S
10 1 2 3 4 5 6 scmatf1o N Fin N R Ring F : K 1-1 onto C
11 2 6 7 scmatstrbas N Fin R Ring Base S = C
12 11 3adant2 N Fin N R Ring Base S = C
13 12 f1oeq3d N Fin N R Ring F : K 1-1 onto Base S F : K 1-1 onto C
14 10 13 mpbird N Fin N R Ring F : K 1-1 onto Base S
15 simp3 N Fin N R Ring R Ring
16 eqid Base A = Base A
17 eqid 0 R = 0 R
18 2 16 1 17 6 scmatsrng N Fin R Ring C SubRing A
19 7 subrgring C SubRing A S Ring
20 18 19 syl N Fin R Ring S Ring
21 eqid Base S = Base S
22 1 21 isrim R Ring S Ring F R RingIso S F R RingHom S F : K 1-1 onto Base S
23 15 20 22 3imp3i2an N Fin N R Ring F R RingIso S F R RingHom S F : K 1-1 onto Base S
24 9 14 23 mpbir2and N Fin N R Ring F R RingIso S