Metamath Proof Explorer


Theorem scmatrngiso

Description: There is a ring isomorphism from a ring to the ring of scalar matrices over this ring with positive dimension. (Contributed by AV, 29-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K=BaseR
scmatrhmval.a A=NMatR
scmatrhmval.o 1˙=1A
scmatrhmval.t ˙=A
scmatrhmval.f F=xKx˙1˙
scmatrhmval.c C=NScMatR
scmatghm.s S=A𝑠C
Assertion scmatrngiso NFinNRRingFRRingIsoS

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K=BaseR
2 scmatrhmval.a A=NMatR
3 scmatrhmval.o 1˙=1A
4 scmatrhmval.t ˙=A
5 scmatrhmval.f F=xKx˙1˙
6 scmatrhmval.c C=NScMatR
7 scmatghm.s S=A𝑠C
8 1 2 3 4 5 6 7 scmatrhm NFinRRingFRRingHomS
9 8 3adant2 NFinNRRingFRRingHomS
10 1 2 3 4 5 6 scmatf1o NFinNRRingF:K1-1 ontoC
11 2 6 7 scmatstrbas NFinRRingBaseS=C
12 11 3adant2 NFinNRRingBaseS=C
13 12 f1oeq3d NFinNRRingF:K1-1 ontoBaseSF:K1-1 ontoC
14 10 13 mpbird NFinNRRingF:K1-1 ontoBaseS
15 eqid BaseS=BaseS
16 1 15 isrim FRRingIsoSFRRingHomSF:K1-1 ontoBaseS
17 9 14 16 sylanbrc NFinNRRingFRRingIsoS