Metamath Proof Explorer


Theorem scmatval

Description: The set of N x N scalar matrices over (a ring) R . (Contributed by AV, 18-Dec-2019)

Ref Expression
Hypotheses scmatval.k K = Base R
scmatval.a A = N Mat R
scmatval.b B = Base A
scmatval.1 1 ˙ = 1 A
scmatval.t · ˙ = A
scmatval.s S = N ScMat R
Assertion scmatval N Fin R V S = m B | c K m = c · ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 scmatval.k K = Base R
2 scmatval.a A = N Mat R
3 scmatval.b B = Base A
4 scmatval.1 1 ˙ = 1 A
5 scmatval.t · ˙ = A
6 scmatval.s S = N ScMat R
7 df-scmat ScMat = n Fin , r V n Mat r / a m Base a | c Base r m = c a 1 a
8 7 a1i N Fin R V ScMat = n Fin , r V n Mat r / a m Base a | c Base r m = c a 1 a
9 ovexd N Fin R V n = N r = R n Mat r V
10 fveq2 a = n Mat r Base a = Base n Mat r
11 fveq2 a = n Mat r a = n Mat r
12 eqidd a = n Mat r c = c
13 fveq2 a = n Mat r 1 a = 1 n Mat r
14 11 12 13 oveq123d a = n Mat r c a 1 a = c n Mat r 1 n Mat r
15 14 eqeq2d a = n Mat r m = c a 1 a m = c n Mat r 1 n Mat r
16 15 rexbidv a = n Mat r c Base r m = c a 1 a c Base r m = c n Mat r 1 n Mat r
17 10 16 rabeqbidv a = n Mat r m Base a | c Base r m = c a 1 a = m Base n Mat r | c Base r m = c n Mat r 1 n Mat r
18 17 adantl N Fin R V n = N r = R a = n Mat r m Base a | c Base r m = c a 1 a = m Base n Mat r | c Base r m = c n Mat r 1 n Mat r
19 9 18 csbied N Fin R V n = N r = R n Mat r / a m Base a | c Base r m = c a 1 a = m Base n Mat r | c Base r m = c n Mat r 1 n Mat r
20 oveq12 n = N r = R n Mat r = N Mat R
21 20 fveq2d n = N r = R Base n Mat r = Base N Mat R
22 2 fveq2i Base A = Base N Mat R
23 3 22 eqtri B = Base N Mat R
24 21 23 eqtr4di n = N r = R Base n Mat r = B
25 fveq2 r = R Base r = Base R
26 25 1 eqtr4di r = R Base r = K
27 26 adantl n = N r = R Base r = K
28 20 fveq2d n = N r = R n Mat r = N Mat R
29 2 fveq2i A = N Mat R
30 5 29 eqtri · ˙ = N Mat R
31 28 30 eqtr4di n = N r = R n Mat r = · ˙
32 eqidd n = N r = R c = c
33 20 fveq2d n = N r = R 1 n Mat r = 1 N Mat R
34 2 fveq2i 1 A = 1 N Mat R
35 4 34 eqtri 1 ˙ = 1 N Mat R
36 33 35 eqtr4di n = N r = R 1 n Mat r = 1 ˙
37 31 32 36 oveq123d n = N r = R c n Mat r 1 n Mat r = c · ˙ 1 ˙
38 37 eqeq2d n = N r = R m = c n Mat r 1 n Mat r m = c · ˙ 1 ˙
39 27 38 rexeqbidv n = N r = R c Base r m = c n Mat r 1 n Mat r c K m = c · ˙ 1 ˙
40 24 39 rabeqbidv n = N r = R m Base n Mat r | c Base r m = c n Mat r 1 n Mat r = m B | c K m = c · ˙ 1 ˙
41 40 adantl N Fin R V n = N r = R m Base n Mat r | c Base r m = c n Mat r 1 n Mat r = m B | c K m = c · ˙ 1 ˙
42 19 41 eqtrd N Fin R V n = N r = R n Mat r / a m Base a | c Base r m = c a 1 a = m B | c K m = c · ˙ 1 ˙
43 simpl N Fin R V N Fin
44 elex R V R V
45 44 adantl N Fin R V R V
46 3 fvexi B V
47 46 rabex m B | c K m = c · ˙ 1 ˙ V
48 47 a1i N Fin R V m B | c K m = c · ˙ 1 ˙ V
49 8 42 43 45 48 ovmpod N Fin R V N ScMat R = m B | c K m = c · ˙ 1 ˙
50 6 49 eqtrid N Fin R V S = m B | c K m = c · ˙ 1 ˙