Metamath Proof Explorer


Theorem sconnpht

Description: A closed path in a simply connected space is contractible to a point. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion sconnpht JSConnFIICnJF0=F1FphJ01×F0

Proof

Step Hyp Ref Expression
1 issconn JSConnJPConnfIICnJf0=f1fphJ01×f0
2 fveq1 f=Ff0=F0
3 fveq1 f=Ff1=F1
4 2 3 eqeq12d f=Ff0=f1F0=F1
5 id f=Ff=F
6 2 sneqd f=Ff0=F0
7 6 xpeq2d f=F01×f0=01×F0
8 5 7 breq12d f=FfphJ01×f0FphJ01×F0
9 4 8 imbi12d f=Ff0=f1fphJ01×f0F0=F1FphJ01×F0
10 9 rspccv fIICnJf0=f1fphJ01×f0FIICnJF0=F1FphJ01×F0
11 1 10 simplbiim JSConnFIICnJF0=F1FphJ01×F0
12 11 3imp JSConnFIICnJF0=F1FphJ01×F0