Metamath Proof Explorer


Theorem seff

Description: Let set S be the real or complex numbers. Then the exponential function restricted to S is a mapping from S to S . (Contributed by Steve Rodriguez, 6-Nov-2015)

Ref Expression
Hypothesis seff.s φS
Assertion seff φexpS:SS

Proof

Step Hyp Ref Expression
1 seff.s φS
2 elpri SS=S=
3 reeff1 exp:1-1+
4 f1f exp:1-1+exp:+
5 rpssre +
6 fss exp:++exp:
7 5 6 mpan2 exp:+exp:
8 3 4 7 mp2b exp:
9 feq23 S=S=exp:SSexp:
10 9 anidms S=exp:SSexp:
11 8 10 mpbiri S=exp:SS
12 reseq2 S=expS=exp
13 12 feq1d S=expS:SSexp:SS
14 11 13 mpbird S=expS:SS
15 eff exp:
16 frel exp:Relexp
17 resdm Relexpexpdomexp=exp
18 15 16 17 mp2b expdomexp=exp
19 15 fdmi domexp=
20 19 reseq2i expdomexp=exp
21 18 20 eqtr3i exp=exp
22 21 feq1i exp:exp:
23 15 22 mpbi exp:
24 feq23 S=S=exp:SSexp:
25 24 anidms S=exp:SSexp:
26 23 25 mpbiri S=exp:SS
27 reseq2 S=expS=exp
28 27 feq1d S=expS:SSexp:SS
29 26 28 mpbird S=expS:SS
30 14 29 jaoi S=S=expS:SS
31 1 2 30 3syl φexpS:SS