Description: Let set S be the real or complex numbers. Then the exponential function restricted to S is a mapping from S to S . (Contributed by Steve Rodriguez, 6-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | seff.s | |
|
Assertion | seff | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seff.s | |
|
2 | elpri | |
|
3 | reeff1 | |
|
4 | f1f | |
|
5 | rpssre | |
|
6 | fss | |
|
7 | 5 6 | mpan2 | |
8 | 3 4 7 | mp2b | |
9 | feq23 | |
|
10 | 9 | anidms | |
11 | 8 10 | mpbiri | |
12 | reseq2 | |
|
13 | 12 | feq1d | |
14 | 11 13 | mpbird | |
15 | eff | |
|
16 | frel | |
|
17 | resdm | |
|
18 | 15 16 17 | mp2b | |
19 | 15 | fdmi | |
20 | 19 | reseq2i | |
21 | 18 20 | eqtr3i | |
22 | 21 | feq1i | |
23 | 15 22 | mpbi | |
24 | feq23 | |
|
25 | 24 | anidms | |
26 | 23 25 | mpbiri | |
27 | reseq2 | |
|
28 | 27 | feq1d | |
29 | 26 28 | mpbird | |
30 | 14 29 | jaoi | |
31 | 1 2 30 | 3syl | |