Metamath Proof Explorer


Theorem seqfeq2

Description: Equality of sequences. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqfveq2.1 φKM
seqfveq2.2 φseqM+˙FK=GK
seqfeq2.4 φkK+1Fk=Gk
Assertion seqfeq2 φseqM+˙FK=seqK+˙G

Proof

Step Hyp Ref Expression
1 seqfveq2.1 φKM
2 seqfveq2.2 φseqM+˙FK=GK
3 seqfeq2.4 φkK+1Fk=Gk
4 eluzel2 KMM
5 seqfn MseqM+˙FFnM
6 1 4 5 3syl φseqM+˙FFnM
7 uzss KMKM
8 1 7 syl φKM
9 fnssres seqM+˙FFnMKMseqM+˙FKFnK
10 6 8 9 syl2anc φseqM+˙FKFnK
11 eluzelz KMK
12 seqfn KseqK+˙GFnK
13 1 11 12 3syl φseqK+˙GFnK
14 fvres xKseqM+˙FKx=seqM+˙Fx
15 14 adantl φxKseqM+˙FKx=seqM+˙Fx
16 1 adantr φxKKM
17 2 adantr φxKseqM+˙FK=GK
18 simpr φxKxK
19 elfzuz kK+1xkK+1
20 19 3 sylan2 φkK+1xFk=Gk
21 20 adantlr φxKkK+1xFk=Gk
22 16 17 18 21 seqfveq2 φxKseqM+˙Fx=seqK+˙Gx
23 15 22 eqtrd φxKseqM+˙FKx=seqK+˙Gx
24 10 13 23 eqfnfvd φseqM+˙FK=seqK+˙G