Metamath Proof Explorer


Theorem seqfveq2

Description: Equality of sequences. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqfveq2.1 φKM
seqfveq2.2 φseqM+˙FK=GK
seqfveq2.3 φNK
seqfveq2.4 φkK+1NFk=Gk
Assertion seqfveq2 φseqM+˙FN=seqK+˙GN

Proof

Step Hyp Ref Expression
1 seqfveq2.1 φKM
2 seqfveq2.2 φseqM+˙FK=GK
3 seqfveq2.3 φNK
4 seqfveq2.4 φkK+1NFk=Gk
5 eluzfz2 NKNKN
6 3 5 syl φNKN
7 eleq1 x=KxKNKKN
8 fveq2 x=KseqM+˙Fx=seqM+˙FK
9 fveq2 x=KseqK+˙Gx=seqK+˙GK
10 8 9 eqeq12d x=KseqM+˙Fx=seqK+˙GxseqM+˙FK=seqK+˙GK
11 7 10 imbi12d x=KxKNseqM+˙Fx=seqK+˙GxKKNseqM+˙FK=seqK+˙GK
12 11 imbi2d x=KφxKNseqM+˙Fx=seqK+˙GxφKKNseqM+˙FK=seqK+˙GK
13 eleq1 x=nxKNnKN
14 fveq2 x=nseqM+˙Fx=seqM+˙Fn
15 fveq2 x=nseqK+˙Gx=seqK+˙Gn
16 14 15 eqeq12d x=nseqM+˙Fx=seqK+˙GxseqM+˙Fn=seqK+˙Gn
17 13 16 imbi12d x=nxKNseqM+˙Fx=seqK+˙GxnKNseqM+˙Fn=seqK+˙Gn
18 17 imbi2d x=nφxKNseqM+˙Fx=seqK+˙GxφnKNseqM+˙Fn=seqK+˙Gn
19 eleq1 x=n+1xKNn+1KN
20 fveq2 x=n+1seqM+˙Fx=seqM+˙Fn+1
21 fveq2 x=n+1seqK+˙Gx=seqK+˙Gn+1
22 20 21 eqeq12d x=n+1seqM+˙Fx=seqK+˙GxseqM+˙Fn+1=seqK+˙Gn+1
23 19 22 imbi12d x=n+1xKNseqM+˙Fx=seqK+˙Gxn+1KNseqM+˙Fn+1=seqK+˙Gn+1
24 23 imbi2d x=n+1φxKNseqM+˙Fx=seqK+˙Gxφn+1KNseqM+˙Fn+1=seqK+˙Gn+1
25 eleq1 x=NxKNNKN
26 fveq2 x=NseqM+˙Fx=seqM+˙FN
27 fveq2 x=NseqK+˙Gx=seqK+˙GN
28 26 27 eqeq12d x=NseqM+˙Fx=seqK+˙GxseqM+˙FN=seqK+˙GN
29 25 28 imbi12d x=NxKNseqM+˙Fx=seqK+˙GxNKNseqM+˙FN=seqK+˙GN
30 29 imbi2d x=NφxKNseqM+˙Fx=seqK+˙GxφNKNseqM+˙FN=seqK+˙GN
31 eluzelz KMK
32 seq1 KseqK+˙GK=GK
33 1 31 32 3syl φseqK+˙GK=GK
34 2 33 eqtr4d φseqM+˙FK=seqK+˙GK
35 34 a1d φKKNseqM+˙FK=seqK+˙GK
36 peano2fzr nKn+1KNnKN
37 36 adantl φnKn+1KNnKN
38 37 expr φnKn+1KNnKN
39 38 imim1d φnKnKNseqM+˙Fn=seqK+˙Gnn+1KNseqM+˙Fn=seqK+˙Gn
40 oveq1 seqM+˙Fn=seqK+˙GnseqM+˙Fn+˙Fn+1=seqK+˙Gn+˙Fn+1
41 simpl nKn+1KNnK
42 uztrn nKKMnM
43 41 1 42 syl2anr φnKn+1KNnM
44 seqp1 nMseqM+˙Fn+1=seqM+˙Fn+˙Fn+1
45 43 44 syl φnKn+1KNseqM+˙Fn+1=seqM+˙Fn+˙Fn+1
46 seqp1 nKseqK+˙Gn+1=seqK+˙Gn+˙Gn+1
47 46 ad2antrl φnKn+1KNseqK+˙Gn+1=seqK+˙Gn+˙Gn+1
48 fveq2 k=n+1Fk=Fn+1
49 fveq2 k=n+1Gk=Gn+1
50 48 49 eqeq12d k=n+1Fk=GkFn+1=Gn+1
51 4 ralrimiva φkK+1NFk=Gk
52 51 adantr φnKn+1KNkK+1NFk=Gk
53 eluzp1p1 nKn+1K+1
54 53 ad2antrl φnKn+1KNn+1K+1
55 elfzuz3 n+1KNNn+1
56 55 ad2antll φnKn+1KNNn+1
57 elfzuzb n+1K+1Nn+1K+1Nn+1
58 54 56 57 sylanbrc φnKn+1KNn+1K+1N
59 50 52 58 rspcdva φnKn+1KNFn+1=Gn+1
60 59 oveq2d φnKn+1KNseqK+˙Gn+˙Fn+1=seqK+˙Gn+˙Gn+1
61 47 60 eqtr4d φnKn+1KNseqK+˙Gn+1=seqK+˙Gn+˙Fn+1
62 45 61 eqeq12d φnKn+1KNseqM+˙Fn+1=seqK+˙Gn+1seqM+˙Fn+˙Fn+1=seqK+˙Gn+˙Fn+1
63 40 62 imbitrrid φnKn+1KNseqM+˙Fn=seqK+˙GnseqM+˙Fn+1=seqK+˙Gn+1
64 39 63 animpimp2impd nKφnKNseqM+˙Fn=seqK+˙Gnφn+1KNseqM+˙Fn+1=seqK+˙Gn+1
65 12 18 24 30 35 64 uzind4i NKφNKNseqM+˙FN=seqK+˙GN
66 3 65 mpcom φNKNseqM+˙FN=seqK+˙GN
67 6 66 mpd φseqM+˙FN=seqK+˙GN