Metamath Proof Explorer


Theorem seqid

Description: Discarding the first few terms of a sequence that starts with all zeroes (or any element which is a left-identity for .+ ) has no effect on its sum. (Contributed by Mario Carneiro, 13-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqid.1 φxSZ+˙x=x
seqid.2 φZS
seqid.3 φNM
seqid.4 φFNS
seqid.5 φxMN1Fx=Z
Assertion seqid φseqM+˙FN=seqN+˙F

Proof

Step Hyp Ref Expression
1 seqid.1 φxSZ+˙x=x
2 seqid.2 φZS
3 seqid.3 φNM
4 seqid.4 φFNS
5 seqid.5 φxMN1Fx=Z
6 eluzelz NMN
7 seq1 NseqN+˙FN=FN
8 3 6 7 3syl φseqN+˙FN=FN
9 seqeq1 N=MseqN+˙F=seqM+˙F
10 9 fveq1d N=MseqN+˙FN=seqM+˙FN
11 10 eqeq1d N=MseqN+˙FN=FNseqM+˙FN=FN
12 8 11 syl5ibcom φN=MseqM+˙FN=FN
13 eluzel2 NMM
14 3 13 syl φM
15 seqm1 MNM+1seqM+˙FN=seqM+˙FN1+˙FN
16 14 15 sylan φNM+1seqM+˙FN=seqM+˙FN1+˙FN
17 oveq2 x=ZZ+˙x=Z+˙Z
18 id x=Zx=Z
19 17 18 eqeq12d x=ZZ+˙x=xZ+˙Z=Z
20 1 ralrimiva φxSZ+˙x=x
21 19 20 2 rspcdva φZ+˙Z=Z
22 21 adantr φNM+1Z+˙Z=Z
23 eluzp1m1 MNM+1N1M
24 14 23 sylan φNM+1N1M
25 5 adantlr φNM+1xMN1Fx=Z
26 22 24 25 seqid3 φNM+1seqM+˙FN1=Z
27 26 oveq1d φNM+1seqM+˙FN1+˙FN=Z+˙FN
28 oveq2 x=FNZ+˙x=Z+˙FN
29 id x=FNx=FN
30 28 29 eqeq12d x=FNZ+˙x=xZ+˙FN=FN
31 20 adantr φNM+1xSZ+˙x=x
32 4 adantr φNM+1FNS
33 30 31 32 rspcdva φNM+1Z+˙FN=FN
34 16 27 33 3eqtrd φNM+1seqM+˙FN=FN
35 34 ex φNM+1seqM+˙FN=FN
36 uzp1 NMN=MNM+1
37 3 36 syl φN=MNM+1
38 12 35 37 mpjaod φseqM+˙FN=FN
39 eqidd φxN+1Fx=Fx
40 3 38 39 seqfeq2 φseqM+˙FN=seqN+˙F