Metamath Proof Explorer


Theorem seqomlem1

Description: Lemma for seqom . The underlying recursion generates a sequence of pairs with the expected first values. (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 23-Jun-2015)

Ref Expression
Hypothesis seqomlem.a Q=reciω,vVsuciiFvII
Assertion seqomlem1 AωQA=A2ndQA

Proof

Step Hyp Ref Expression
1 seqomlem.a Q=reciω,vVsuciiFvII
2 fveq2 a=Qa=Q
3 id a=a=
4 2fveq3 a=2ndQa=2ndQ
5 3 4 opeq12d a=a2ndQa=2ndQ
6 2 5 eqeq12d a=Qa=a2ndQaQ=2ndQ
7 fveq2 a=bQa=Qb
8 id a=ba=b
9 2fveq3 a=b2ndQa=2ndQb
10 8 9 opeq12d a=ba2ndQa=b2ndQb
11 7 10 eqeq12d a=bQa=a2ndQaQb=b2ndQb
12 fveq2 a=sucbQa=Qsucb
13 id a=sucba=sucb
14 2fveq3 a=sucb2ndQa=2ndQsucb
15 13 14 opeq12d a=sucba2ndQa=sucb2ndQsucb
16 12 15 eqeq12d a=sucbQa=a2ndQaQsucb=sucb2ndQsucb
17 fveq2 a=AQa=QA
18 id a=Aa=A
19 2fveq3 a=A2ndQa=2ndQA
20 18 19 opeq12d a=Aa2ndQa=A2ndQA
21 17 20 eqeq12d a=AQa=a2ndQaQA=A2ndQA
22 1 fveq1i Q=reciω,vVsuciiFvII
23 opex IIV
24 23 rdg0 reciω,vVsuciiFvII=II
25 22 24 eqtri Q=II
26 0ex V
27 fvex IIV
28 26 27 op2nd 2ndII=II
29 28 eqcomi II=2ndII
30 29 opeq2i II=2ndII
31 id Q=IIQ=II
32 fveq2 Q=II2ndQ=2ndII
33 32 opeq2d Q=II2ndQ=2ndII
34 30 31 33 3eqtr4a Q=IIQ=2ndQ
35 25 34 ax-mp Q=2ndQ
36 df-ov biω,vVsuciiFv2ndQb=iω,vVsuciiFvb2ndQb
37 fvex 2ndQbV
38 suceq i=bsuci=sucb
39 oveq1 i=biFv=bFv
40 38 39 opeq12d i=bsuciiFv=sucbbFv
41 oveq2 v=2ndQbbFv=bF2ndQb
42 41 opeq2d v=2ndQbsucbbFv=sucbbF2ndQb
43 eqid iω,vVsuciiFv=iω,vVsuciiFv
44 opex sucbbF2ndQbV
45 40 42 43 44 ovmpo bω2ndQbVbiω,vVsuciiFv2ndQb=sucbbF2ndQb
46 37 45 mpan2 bωbiω,vVsuciiFv2ndQb=sucbbF2ndQb
47 36 46 eqtr3id bωiω,vVsuciiFvb2ndQb=sucbbF2ndQb
48 fveqeq2 Qb=b2ndQbiω,vVsuciiFvQb=sucbbF2ndQbiω,vVsuciiFvb2ndQb=sucbbF2ndQb
49 47 48 syl5ibrcom bωQb=b2ndQbiω,vVsuciiFvQb=sucbbF2ndQb
50 vex bV
51 50 sucex sucbV
52 ovex bF2ndQbV
53 51 52 op2nd 2ndsucbbF2ndQb=bF2ndQb
54 53 eqcomi bF2ndQb=2ndsucbbF2ndQb
55 54 a1i bωbF2ndQb=2ndsucbbF2ndQb
56 55 opeq2d bωsucbbF2ndQb=sucb2ndsucbbF2ndQb
57 id iω,vVsuciiFvQb=sucbbF2ndQbiω,vVsuciiFvQb=sucbbF2ndQb
58 fveq2 iω,vVsuciiFvQb=sucbbF2ndQb2ndiω,vVsuciiFvQb=2ndsucbbF2ndQb
59 58 opeq2d iω,vVsuciiFvQb=sucbbF2ndQbsucb2ndiω,vVsuciiFvQb=sucb2ndsucbbF2ndQb
60 57 59 eqeq12d iω,vVsuciiFvQb=sucbbF2ndQbiω,vVsuciiFvQb=sucb2ndiω,vVsuciiFvQbsucbbF2ndQb=sucb2ndsucbbF2ndQb
61 56 60 syl5ibrcom bωiω,vVsuciiFvQb=sucbbF2ndQbiω,vVsuciiFvQb=sucb2ndiω,vVsuciiFvQb
62 49 61 syld bωQb=b2ndQbiω,vVsuciiFvQb=sucb2ndiω,vVsuciiFvQb
63 frsuc bωreciω,vVsuciiFvIIωsucb=iω,vVsuciiFvreciω,vVsuciiFvIIωb
64 peano2 bωsucbω
65 64 fvresd bωreciω,vVsuciiFvIIωsucb=reciω,vVsuciiFvIIsucb
66 1 fveq1i Qsucb=reciω,vVsuciiFvIIsucb
67 65 66 eqtr4di bωreciω,vVsuciiFvIIωsucb=Qsucb
68 fvres bωreciω,vVsuciiFvIIωb=reciω,vVsuciiFvIIb
69 1 fveq1i Qb=reciω,vVsuciiFvIIb
70 68 69 eqtr4di bωreciω,vVsuciiFvIIωb=Qb
71 70 fveq2d bωiω,vVsuciiFvreciω,vVsuciiFvIIωb=iω,vVsuciiFvQb
72 63 67 71 3eqtr3d bωQsucb=iω,vVsuciiFvQb
73 72 fveq2d bω2ndQsucb=2ndiω,vVsuciiFvQb
74 73 opeq2d bωsucb2ndQsucb=sucb2ndiω,vVsuciiFvQb
75 72 74 eqeq12d bωQsucb=sucb2ndQsucbiω,vVsuciiFvQb=sucb2ndiω,vVsuciiFvQb
76 62 75 sylibrd bωQb=b2ndQbQsucb=sucb2ndQsucb
77 6 11 16 21 35 76 finds AωQA=A2ndQA