Description: Lemma for seqom . The underlying recursion generates a sequence of pairs with the expected first values. (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 23-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | seqomlem.a | |
|
Assertion | seqomlem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqomlem.a | |
|
2 | fveq2 | |
|
3 | id | |
|
4 | 2fveq3 | |
|
5 | 3 4 | opeq12d | |
6 | 2 5 | eqeq12d | |
7 | fveq2 | |
|
8 | id | |
|
9 | 2fveq3 | |
|
10 | 8 9 | opeq12d | |
11 | 7 10 | eqeq12d | |
12 | fveq2 | |
|
13 | id | |
|
14 | 2fveq3 | |
|
15 | 13 14 | opeq12d | |
16 | 12 15 | eqeq12d | |
17 | fveq2 | |
|
18 | id | |
|
19 | 2fveq3 | |
|
20 | 18 19 | opeq12d | |
21 | 17 20 | eqeq12d | |
22 | 1 | fveq1i | |
23 | opex | |
|
24 | 23 | rdg0 | |
25 | 22 24 | eqtri | |
26 | 0ex | |
|
27 | fvex | |
|
28 | 26 27 | op2nd | |
29 | 28 | eqcomi | |
30 | 29 | opeq2i | |
31 | id | |
|
32 | fveq2 | |
|
33 | 32 | opeq2d | |
34 | 30 31 33 | 3eqtr4a | |
35 | 25 34 | ax-mp | |
36 | df-ov | |
|
37 | fvex | |
|
38 | suceq | |
|
39 | oveq1 | |
|
40 | 38 39 | opeq12d | |
41 | oveq2 | |
|
42 | 41 | opeq2d | |
43 | eqid | |
|
44 | opex | |
|
45 | 40 42 43 44 | ovmpo | |
46 | 37 45 | mpan2 | |
47 | 36 46 | eqtr3id | |
48 | fveqeq2 | |
|
49 | 47 48 | syl5ibrcom | |
50 | vex | |
|
51 | 50 | sucex | |
52 | ovex | |
|
53 | 51 52 | op2nd | |
54 | 53 | eqcomi | |
55 | 54 | a1i | |
56 | 55 | opeq2d | |
57 | id | |
|
58 | fveq2 | |
|
59 | 58 | opeq2d | |
60 | 57 59 | eqeq12d | |
61 | 56 60 | syl5ibrcom | |
62 | 49 61 | syld | |
63 | frsuc | |
|
64 | peano2 | |
|
65 | 64 | fvresd | |
66 | 1 | fveq1i | |
67 | 65 66 | eqtr4di | |
68 | fvres | |
|
69 | 1 | fveq1i | |
70 | 68 69 | eqtr4di | |
71 | 70 | fveq2d | |
72 | 63 67 71 | 3eqtr3d | |
73 | 72 | fveq2d | |
74 | 73 | opeq2d | |
75 | 72 74 | eqeq12d | |
76 | 62 75 | sylibrd | |
77 | 6 11 16 21 35 76 | finds | |