Metamath Proof Explorer


Theorem setrec1lem2

Description: Lemma for setrec1 . If a family of sets are all recursively generated by F , so is their union. In this theorem, X is a family of sets which are all elements of Y , and V is any class. Use dfss3 , equivalence and equality theorems, and unissb at the end. Sandwich with applications of setrec1lem1. (Contributed by Emmett Weisz, 24-Jan-2021) (New usage is discouraged.)

Ref Expression
Hypotheses setrec1lem2.1 Y=y|zwwywzFwzyz
setrec1lem2.2 φXV
setrec1lem2.3 φXY
Assertion setrec1lem2 φXY

Proof

Step Hyp Ref Expression
1 setrec1lem2.1 Y=y|zwwywzFwzyz
2 setrec1lem2.2 φXV
3 setrec1lem2.3 φXY
4 dfss3 XYxXxY
5 3 4 sylib φxXxY
6 vex xV
7 6 a1i φxV
8 1 7 setrec1lem1 φxYzwwxwzFwzxz
9 8 ralbidv φxXxYxXzwwxwzFwzxz
10 5 9 mpbid φxXzwwxwzFwzxz
11 ralcom4 xXzwwxwzFwzxzzxXwwxwzFwzxz
12 10 11 sylib φzxXwwxwzFwzxz
13 nfra1 xxXwwxwzFwzxz
14 nfv xwwXwzFwz
15 rsp xXwwxwzFwzxzxXwwxwzFwzxz
16 elssuni xXxX
17 sstr2 wxxXwX
18 16 17 syl5com xXwxwX
19 18 imim1d xXwXwzFwzwxwzFwz
20 19 alimdv xXwwXwzFwzwwxwzFwz
21 20 imim1d xXwwxwzFwzxzwwXwzFwzxz
22 15 21 sylcom xXwwxwzFwzxzxXwwXwzFwzxz
23 22 com23 xXwwxwzFwzxzwwXwzFwzxXxz
24 13 14 23 ralrimd xXwwxwzFwzxzwwXwzFwzxXxz
25 24 alimi zxXwwxwzFwzxzzwwXwzFwzxXxz
26 12 25 syl φzwwXwzFwzxXxz
27 unissb XzxXxz
28 27 imbi2i wwXwzFwzXzwwXwzFwzxXxz
29 28 albii zwwXwzFwzXzzwwXwzFwzxXxz
30 26 29 sylibr φzwwXwzFwzXz
31 2 uniexd φXV
32 1 31 setrec1lem1 φXYzwwXwzFwzXz
33 30 32 mpbird φXY