Metamath Proof Explorer


Theorem setrec1lem4

Description: Lemma for setrec1 . If X is recursively generated by F , then so is X u. ( FA ) .

In the proof of setrec1 , the following is substituted for this theorem's ph : ( ph /\ ( A C_ x /\ x e. { y | A. z ( A. w ( w C_ y -> ( w C_ z -> ( Fw ) C_ z ) ) -> y C_ z ) } ) ) Therefore, we cannot declare z to be a distinct variable from ph , since we need it to appear as a bound variable in ph . This theorem can be proven without the hypothesis F/ z ph , but the proof would be harder to read because theorems in deduction form would be interrupted by theorems like eximi , making the antecedent of each line something more complicated than ph . The proof of setrec1lem2 could similarly be made easier to read by adding the hypothesis F/ z ph , but I had already finished the proof and decided to leave it as is. (Contributed by Emmett Weisz, 26-Nov-2020) (New usage is discouraged.)

Ref Expression
Hypotheses setrec1lem4.1 zφ
setrec1lem4.2 Y=y|zwwywzFwzyz
setrec1lem4.3 φAV
setrec1lem4.4 φAX
setrec1lem4.5 φXY
Assertion setrec1lem4 φXFAY

Proof

Step Hyp Ref Expression
1 setrec1lem4.1 zφ
2 setrec1lem4.2 Y=y|zwwywzFwzyz
3 setrec1lem4.3 φAV
4 setrec1lem4.4 φAX
5 setrec1lem4.5 φXY
6 id wXwX
7 ssun1 XXFA
8 6 7 sstrdi wXwXFA
9 8 imim1i wXFAwzFwzwXwzFwz
10 9 alimi wwXFAwzFwzwwXwzFwz
11 2 5 setrec1lem1 φXYzwwXwzFwzXz
12 5 11 mpbid φzwwXwzFwzXz
13 sp zwwXwzFwzXzwwXwzFwzXz
14 12 13 syl φwwXwzFwzXz
15 sstr2 AXXzAz
16 4 15 syl φXzAz
17 14 16 syld φwwXwzFwzAz
18 sseq1 w=AwXAX
19 sseq1 w=AwzAz
20 fveq2 w=AFw=FA
21 20 sseq1d w=AFwzFAz
22 19 21 imbi12d w=AwzFwzAzFAz
23 18 22 imbi12d w=AwXwzFwzAXAzFAz
24 3 23 spcdvw φwwXwzFwzAXAzFAz
25 4 24 mpid φwwXwzFwzAzFAz
26 17 25 mpdd φwwXwzFwzFAz
27 14 26 jcad φwwXwzFwzXzFAz
28 10 27 syl5 φwwXFAwzFwzXzFAz
29 unss XzFAzXFAz
30 28 29 imbitrdi φwwXFAwzFwzXFAz
31 1 30 alrimi φzwwXFAwzFwzXFAz
32 fvex FAV
33 unexg XYFAVXFAV
34 5 32 33 sylancl φXFAV
35 2 34 setrec1lem1 φXFAYzwwXFAwzFwzXFAz
36 31 35 mpbird φXFAY