Metamath Proof Explorer


Theorem setrecsss

Description: The setrecs operator respects the subset relation between two functions F and G . (Contributed by Emmett Weisz, 13-Mar-2022)

Ref Expression
Hypotheses setrecsss.1 φFunG
setrecsss.2 φFG
Assertion setrecsss φsetrecsFsetrecsG

Proof

Step Hyp Ref Expression
1 setrecsss.1 φFunG
2 setrecsss.2 φFG
3 eqid setrecsF=setrecsF
4 imass1 FGFxGx
5 2 4 syl φFxGx
6 5 unissd φFxGx
7 funss FGFunGFunF
8 2 1 7 sylc φFunF
9 funfv FunFFx=Fx
10 8 9 syl φFx=Fx
11 funfv FunGGx=Gx
12 1 11 syl φGx=Gx
13 6 10 12 3sstr4d φFxGx
14 13 adantr φxsetrecsGFxGx
15 eqid setrecsG=setrecsG
16 vex xV
17 16 a1i φxsetrecsGxV
18 simpr φxsetrecsGxsetrecsG
19 15 17 18 setrec1 φxsetrecsGGxsetrecsG
20 14 19 sstrd φxsetrecsGFxsetrecsG
21 20 ex φxsetrecsGFxsetrecsG
22 21 alrimiv φxxsetrecsGFxsetrecsG
23 3 22 setrec2v φsetrecsFsetrecsG