Metamath Proof Explorer


Theorem sge0ssre

Description: If a sum of nonnegative extended reals is real, than any subsum is real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0less.x φ X V
sge0less.f φ F : X 0 +∞
sge0ssre.re φ sum^ F
Assertion sge0ssre φ sum^ F Y

Proof

Step Hyp Ref Expression
1 sge0less.x φ X V
2 sge0less.f φ F : X 0 +∞
3 sge0ssre.re φ sum^ F
4 inex1g X V X Y V
5 1 4 syl φ X Y V
6 fresin F : X 0 +∞ F Y : X Y 0 +∞
7 2 6 syl φ F Y : X Y 0 +∞
8 5 7 sge0xrcl φ sum^ F Y *
9 mnfxr −∞ *
10 9 a1i φ −∞ *
11 0xr 0 *
12 11 a1i φ 0 *
13 mnflt0 −∞ < 0
14 13 a1i φ −∞ < 0
15 5 7 sge0ge0 φ 0 sum^ F Y
16 10 12 8 14 15 xrltletrd φ −∞ < sum^ F Y
17 1 2 sge0less φ sum^ F Y sum^ F
18 xrre sum^ F Y * sum^ F −∞ < sum^ F Y sum^ F Y sum^ F sum^ F Y
19 8 3 16 17 18 syl22anc φ sum^ F Y