Description: If a sum of nonnegative extended reals is real, than any subsum is real. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sge0less.x | |
|
sge0less.f | |
||
sge0ssre.re | |
||
Assertion | sge0ssre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0less.x | |
|
2 | sge0less.f | |
|
3 | sge0ssre.re | |
|
4 | inex1g | |
|
5 | 1 4 | syl | |
6 | fresin | |
|
7 | 2 6 | syl | |
8 | 5 7 | sge0xrcl | |
9 | mnfxr | |
|
10 | 9 | a1i | |
11 | 0xr | |
|
12 | 11 | a1i | |
13 | mnflt0 | |
|
14 | 13 | a1i | |
15 | 5 7 | sge0ge0 | |
16 | 10 12 8 14 15 | xrltletrd | |
17 | 1 2 | sge0less | |
18 | xrre | |
|
19 | 8 3 16 17 18 | syl22anc | |