Metamath Proof Explorer


Theorem sge0ssre

Description: If a sum of nonnegative extended reals is real, than any subsum is real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses sge0less.x φXV
sge0less.f φF:X0+∞
sge0ssre.re φsum^F
Assertion sge0ssre φsum^FY

Proof

Step Hyp Ref Expression
1 sge0less.x φXV
2 sge0less.f φF:X0+∞
3 sge0ssre.re φsum^F
4 inex1g XVXYV
5 1 4 syl φXYV
6 fresin F:X0+∞FY:XY0+∞
7 2 6 syl φFY:XY0+∞
8 5 7 sge0xrcl φsum^FY*
9 mnfxr −∞*
10 9 a1i φ−∞*
11 0xr 0*
12 11 a1i φ0*
13 mnflt0 −∞<0
14 13 a1i φ−∞<0
15 5 7 sge0ge0 φ0sum^FY
16 10 12 8 14 15 xrltletrd φ−∞<sum^FY
17 1 2 sge0less φsum^FYsum^F
18 xrre sum^FY*sum^F−∞<sum^FYsum^FYsum^Fsum^FY
19 8 3 16 17 18 syl22anc φsum^FY