Metamath Proof Explorer


Theorem sigaclcuni

Description: A sigma-algebra is closed under countable union: indexed union version. (Contributed by Thierry Arnoux, 8-Jun-2017)

Ref Expression
Hypothesis sigaclcuni.1 _kA
Assertion sigaclcuni SransigAlgebrakABSAωkABS

Proof

Step Hyp Ref Expression
1 sigaclcuni.1 _kA
2 dfiun2g kABSkAB=z|kAz=B
3 2 3ad2ant2 SransigAlgebrakABSAωkAB=z|kAz=B
4 simp1 SransigAlgebrakABSAωSransigAlgebra
5 r19.29 kABSkAz=BkABSz=B
6 simpr BSz=Bz=B
7 simpl BSz=BBS
8 6 7 eqeltrd BSz=BzS
9 8 rexlimivw kABSz=BzS
10 5 9 syl kABSkAz=BzS
11 10 ex kABSkAz=BzS
12 11 abssdv kABSz|kAz=BS
13 12 3ad2ant2 SransigAlgebrakABSAωz|kAz=BS
14 elpw2g SransigAlgebraz|kAz=B𝒫Sz|kAz=BS
15 4 14 syl SransigAlgebrakABSAωz|kAz=B𝒫Sz|kAz=BS
16 13 15 mpbird SransigAlgebrakABSAωz|kAz=B𝒫S
17 1 abrexctf Aωz|kAz=Bω
18 17 3ad2ant3 SransigAlgebrakABSAωz|kAz=Bω
19 sigaclcu SransigAlgebraz|kAz=B𝒫Sz|kAz=Bωz|kAz=BS
20 4 16 18 19 syl3anc SransigAlgebrakABSAωz|kAz=BS
21 3 20 eqeltrd SransigAlgebrakABSAωkABS