Metamath Proof Explorer


Theorem sigaclcuni

Description: A sigma-algebra is closed under countable union: indexed union version. (Contributed by Thierry Arnoux, 8-Jun-2017)

Ref Expression
Hypothesis sigaclcuni.1 _ k A
Assertion sigaclcuni S ran sigAlgebra k A B S A ω k A B S

Proof

Step Hyp Ref Expression
1 sigaclcuni.1 _ k A
2 dfiun2g k A B S k A B = z | k A z = B
3 2 3ad2ant2 S ran sigAlgebra k A B S A ω k A B = z | k A z = B
4 simp1 S ran sigAlgebra k A B S A ω S ran sigAlgebra
5 r19.29 k A B S k A z = B k A B S z = B
6 simpr B S z = B z = B
7 simpl B S z = B B S
8 6 7 eqeltrd B S z = B z S
9 8 rexlimivw k A B S z = B z S
10 5 9 syl k A B S k A z = B z S
11 10 ex k A B S k A z = B z S
12 11 abssdv k A B S z | k A z = B S
13 12 3ad2ant2 S ran sigAlgebra k A B S A ω z | k A z = B S
14 elpw2g S ran sigAlgebra z | k A z = B 𝒫 S z | k A z = B S
15 4 14 syl S ran sigAlgebra k A B S A ω z | k A z = B 𝒫 S z | k A z = B S
16 13 15 mpbird S ran sigAlgebra k A B S A ω z | k A z = B 𝒫 S
17 1 abrexctf A ω z | k A z = B ω
18 17 3ad2ant3 S ran sigAlgebra k A B S A ω z | k A z = B ω
19 sigaclcu S ran sigAlgebra z | k A z = B 𝒫 S z | k A z = B ω z | k A z = B S
20 4 16 18 19 syl3anc S ran sigAlgebra k A B S A ω z | k A z = B S
21 3 20 eqeltrd S ran sigAlgebra k A B S A ω k A B S