Metamath Proof Explorer


Theorem sigarms

Description: Signed area is additive (with respect to subtraction) by the second argument. (Contributed by Saveliy Skresanov, 19-Sep-2017)

Ref Expression
Hypothesis sigar G=x,yxy
Assertion sigarms ABCAGBC=AGBAGC

Proof

Step Hyp Ref Expression
1 sigar G=x,yxy
2 simp1 ABCA
3 simp2 ABCB
4 simp3 ABCC
5 3 4 subcld ABCBC
6 1 sigarac ABCAGBC=BCGA
7 2 5 6 syl2anc ABCAGBC=BCGA
8 1 sigarmf BACBCGA=BGACGA
9 8 negeqd BACBCGA=BGACGA
10 9 3com12 ABCBCGA=BGACGA
11 3simpa ABCAB
12 11 ancomd ABCBA
13 1 sigarim BABGA
14 12 13 syl ABCBGA
15 14 recnd ABCBGA
16 3simpb ABCAC
17 16 ancomd ABCCA
18 1 sigarim CACGA
19 17 18 syl ABCCGA
20 19 recnd ABCCGA
21 negsubdi BGACGABGACGA=-BGA+CGA
22 simpl BGACGABGA
23 22 negcld BGACGABGA
24 simpr BGACGACGA
25 23 24 subnegd BGACGA-BGA-CGA=-BGA+CGA
26 21 25 eqtr4d BGACGABGACGA=-BGA-CGA
27 15 20 26 syl2anc ABCBGACGA=-BGA-CGA
28 10 27 eqtrd ABCBCGA=-BGA-CGA
29 1 sigarac ABAGB=BGA
30 2 3 29 syl2anc ABCAGB=BGA
31 30 eqcomd ABCBGA=AGB
32 1 sigarac ACAGC=CGA
33 2 4 32 syl2anc ABCAGC=CGA
34 33 eqcomd ABCCGA=AGC
35 31 34 oveq12d ABC-BGA-CGA=AGBAGC
36 7 28 35 3eqtrd ABCAGBC=AGBAGC