Metamath Proof Explorer


Theorem sii

Description: Schwarz inequality. Part of Lemma 3-2.1(a) of Kreyszig p. 137. This is also called the Cauchy-Schwarz inequality by some authors and Bunjakovaskij-Cauchy-Schwarz inequality by others. See also theorems bcseqi , bcsiALT , bcsiHIL , csbren . This is Metamath 100 proof #78. (Contributed by NM, 12-Jan-2008) (New usage is discouraged.)

Ref Expression
Hypotheses sii.1 X = BaseSet U
sii.6 N = norm CV U
sii.7 P = 𝑖OLD U
sii.9 U CPreHil OLD
Assertion sii A X B X A P B N A N B

Proof

Step Hyp Ref Expression
1 sii.1 X = BaseSet U
2 sii.6 N = norm CV U
3 sii.7 P = 𝑖OLD U
4 sii.9 U CPreHil OLD
5 fvoveq1 A = if A X A 0 vec U A P B = if A X A 0 vec U P B
6 fveq2 A = if A X A 0 vec U N A = N if A X A 0 vec U
7 6 oveq1d A = if A X A 0 vec U N A N B = N if A X A 0 vec U N B
8 5 7 breq12d A = if A X A 0 vec U A P B N A N B if A X A 0 vec U P B N if A X A 0 vec U N B
9 oveq2 B = if B X B 0 vec U if A X A 0 vec U P B = if A X A 0 vec U P if B X B 0 vec U
10 9 fveq2d B = if B X B 0 vec U if A X A 0 vec U P B = if A X A 0 vec U P if B X B 0 vec U
11 fveq2 B = if B X B 0 vec U N B = N if B X B 0 vec U
12 11 oveq2d B = if B X B 0 vec U N if A X A 0 vec U N B = N if A X A 0 vec U N if B X B 0 vec U
13 10 12 breq12d B = if B X B 0 vec U if A X A 0 vec U P B N if A X A 0 vec U N B if A X A 0 vec U P if B X B 0 vec U N if A X A 0 vec U N if B X B 0 vec U
14 eqid 0 vec U = 0 vec U
15 1 14 4 elimph if A X A 0 vec U X
16 1 14 4 elimph if B X B 0 vec U X
17 1 2 3 4 15 16 siii if A X A 0 vec U P if B X B 0 vec U N if A X A 0 vec U N if B X B 0 vec U
18 8 13 17 dedth2h A X B X A P B N A N B