Metamath Proof Explorer


Theorem bcsiALT

Description: Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of Beran p. 98. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses bcs.1 A
bcs.2 B
Assertion bcsiALT AihBnormAnormB

Proof

Step Hyp Ref Expression
1 bcs.1 A
2 bcs.2 B
3 fveq2 AihB=0AihB=0
4 abs0 0=0
5 normge0 A0normA
6 1 5 ax-mp 0normA
7 normge0 B0normB
8 2 7 ax-mp 0normB
9 1 normcli normA
10 2 normcli normB
11 9 10 mulge0i 0normA0normB0normAnormB
12 6 8 11 mp2an 0normAnormB
13 4 12 eqbrtri 0normAnormB
14 3 13 eqbrtrdi AihB=0AihBnormAnormB
15 df-ne AihB0¬AihB=0
16 2 1 his1i BihA=AihB
17 16 oveq2i AihBAihBBihA=AihBAihBAihB
18 17 oveq2i AihBAihBAihB+AihBAihBBihA=AihBAihBAihB+AihBAihBAihB
19 1 2 hicli AihB
20 abslem2 AihBAihB0AihBAihBAihB+AihBAihBAihB=2AihB
21 19 20 mpan AihB0AihBAihBAihB+AihBAihBAihB=2AihB
22 18 21 eqtr2id AihB02AihB=AihBAihBAihB+AihBAihBBihA
23 19 abs00i AihB=0AihB=0
24 23 necon3bii AihB0AihB0
25 19 abscli AihB
26 25 recni AihB
27 19 26 divclzi AihB0AihBAihB
28 19 26 divreczi AihB0AihBAihB=AihB1AihB
29 28 fveq2d AihB0AihBAihB=AihB1AihB
30 26 recclzi AihB01AihB
31 absmul AihB1AihBAihB1AihB=AihB1AihB
32 19 30 31 sylancr AihB0AihB1AihB=AihB1AihB
33 25 rerecclzi AihB01AihB
34 0re 0
35 33 34 jctil AihB001AihB
36 19 absgt0i AihB00<AihB
37 24 36 bitri AihB00<AihB
38 25 recgt0i 0<AihB0<1AihB
39 37 38 sylbi AihB00<1AihB
40 ltle 01AihB0<1AihB01AihB
41 35 39 40 sylc AihB001AihB
42 33 41 absidd AihB01AihB=1AihB
43 42 oveq2d AihB0AihB1AihB=AihB1AihB
44 32 43 eqtrd AihB0AihB1AihB=AihB1AihB
45 26 recidzi AihB0AihB1AihB=1
46 29 44 45 3eqtrd AihB0AihBAihB=1
47 27 46 jca AihB0AihBAihBAihBAihB=1
48 24 47 sylbir AihB0AihBAihBAihBAihB=1
49 1 2 normlem7tALT AihBAihBAihBAihB=1AihBAihBAihB+AihBAihBBihA2BihBAihA
50 48 49 syl AihB0AihBAihBAihB+AihBAihBBihA2BihBAihA
51 22 50 eqbrtrd AihB02AihB2BihBAihA
52 15 51 sylbir ¬AihB=02AihB2BihBAihA
53 10 recni normB
54 9 recni normA
55 normval BnormB=BihB
56 2 55 ax-mp normB=BihB
57 normval AnormA=AihA
58 1 57 ax-mp normA=AihA
59 56 58 oveq12i normBnormA=BihBAihA
60 53 54 59 mulcomli normAnormB=BihBAihA
61 60 breq2i AihBnormAnormBAihBBihBAihA
62 2pos 0<2
63 hiidge0 B0BihB
64 hiidrcl BBihB
65 2 64 ax-mp BihB
66 65 sqrtcli 0BihBBihB
67 2 63 66 mp2b BihB
68 hiidge0 A0AihA
69 hiidrcl AAihA
70 1 69 ax-mp AihA
71 70 sqrtcli 0AihAAihA
72 1 68 71 mp2b AihA
73 67 72 remulcli BihBAihA
74 2re 2
75 25 73 74 lemul2i 0<2AihBBihBAihA2AihB2BihBAihA
76 62 75 ax-mp AihBBihBAihA2AihB2BihBAihA
77 61 76 bitri AihBnormAnormB2AihB2BihBAihA
78 52 77 sylibr ¬AihB=0AihBnormAnormB
79 14 78 pm2.61i AihBnormAnormB