| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bcs.1 |  |-  A e. ~H | 
						
							| 2 |  | bcs.2 |  |-  B e. ~H | 
						
							| 3 |  | fveq2 |  |-  ( ( A .ih B ) = 0 -> ( abs ` ( A .ih B ) ) = ( abs ` 0 ) ) | 
						
							| 4 |  | abs0 |  |-  ( abs ` 0 ) = 0 | 
						
							| 5 |  | normge0 |  |-  ( A e. ~H -> 0 <_ ( normh ` A ) ) | 
						
							| 6 | 1 5 | ax-mp |  |-  0 <_ ( normh ` A ) | 
						
							| 7 |  | normge0 |  |-  ( B e. ~H -> 0 <_ ( normh ` B ) ) | 
						
							| 8 | 2 7 | ax-mp |  |-  0 <_ ( normh ` B ) | 
						
							| 9 | 1 | normcli |  |-  ( normh ` A ) e. RR | 
						
							| 10 | 2 | normcli |  |-  ( normh ` B ) e. RR | 
						
							| 11 | 9 10 | mulge0i |  |-  ( ( 0 <_ ( normh ` A ) /\ 0 <_ ( normh ` B ) ) -> 0 <_ ( ( normh ` A ) x. ( normh ` B ) ) ) | 
						
							| 12 | 6 8 11 | mp2an |  |-  0 <_ ( ( normh ` A ) x. ( normh ` B ) ) | 
						
							| 13 | 4 12 | eqbrtri |  |-  ( abs ` 0 ) <_ ( ( normh ` A ) x. ( normh ` B ) ) | 
						
							| 14 | 3 13 | eqbrtrdi |  |-  ( ( A .ih B ) = 0 -> ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) ) | 
						
							| 15 |  | df-ne |  |-  ( ( A .ih B ) =/= 0 <-> -. ( A .ih B ) = 0 ) | 
						
							| 16 | 2 1 | his1i |  |-  ( B .ih A ) = ( * ` ( A .ih B ) ) | 
						
							| 17 | 16 | oveq2i |  |-  ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( B .ih A ) ) = ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( * ` ( A .ih B ) ) ) | 
						
							| 18 | 17 | oveq2i |  |-  ( ( ( * ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) x. ( A .ih B ) ) + ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( B .ih A ) ) ) = ( ( ( * ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) x. ( A .ih B ) ) + ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( * ` ( A .ih B ) ) ) ) | 
						
							| 19 | 1 2 | hicli |  |-  ( A .ih B ) e. CC | 
						
							| 20 |  | abslem2 |  |-  ( ( ( A .ih B ) e. CC /\ ( A .ih B ) =/= 0 ) -> ( ( ( * ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) x. ( A .ih B ) ) + ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( * ` ( A .ih B ) ) ) ) = ( 2 x. ( abs ` ( A .ih B ) ) ) ) | 
						
							| 21 | 19 20 | mpan |  |-  ( ( A .ih B ) =/= 0 -> ( ( ( * ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) x. ( A .ih B ) ) + ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( * ` ( A .ih B ) ) ) ) = ( 2 x. ( abs ` ( A .ih B ) ) ) ) | 
						
							| 22 | 18 21 | eqtr2id |  |-  ( ( A .ih B ) =/= 0 -> ( 2 x. ( abs ` ( A .ih B ) ) ) = ( ( ( * ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) x. ( A .ih B ) ) + ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( B .ih A ) ) ) ) | 
						
							| 23 | 19 | abs00i |  |-  ( ( abs ` ( A .ih B ) ) = 0 <-> ( A .ih B ) = 0 ) | 
						
							| 24 | 23 | necon3bii |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 <-> ( A .ih B ) =/= 0 ) | 
						
							| 25 | 19 | abscli |  |-  ( abs ` ( A .ih B ) ) e. RR | 
						
							| 26 | 25 | recni |  |-  ( abs ` ( A .ih B ) ) e. CC | 
						
							| 27 | 19 26 | divclzi |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) e. CC ) | 
						
							| 28 | 19 26 | divreczi |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) = ( ( A .ih B ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) ) | 
						
							| 29 | 28 | fveq2d |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> ( abs ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) = ( abs ` ( ( A .ih B ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) ) ) | 
						
							| 30 | 26 | recclzi |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> ( 1 / ( abs ` ( A .ih B ) ) ) e. CC ) | 
						
							| 31 |  | absmul |  |-  ( ( ( A .ih B ) e. CC /\ ( 1 / ( abs ` ( A .ih B ) ) ) e. CC ) -> ( abs ` ( ( A .ih B ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) ) = ( ( abs ` ( A .ih B ) ) x. ( abs ` ( 1 / ( abs ` ( A .ih B ) ) ) ) ) ) | 
						
							| 32 | 19 30 31 | sylancr |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> ( abs ` ( ( A .ih B ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) ) = ( ( abs ` ( A .ih B ) ) x. ( abs ` ( 1 / ( abs ` ( A .ih B ) ) ) ) ) ) | 
						
							| 33 | 25 | rerecclzi |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> ( 1 / ( abs ` ( A .ih B ) ) ) e. RR ) | 
						
							| 34 |  | 0re |  |-  0 e. RR | 
						
							| 35 | 33 34 | jctil |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> ( 0 e. RR /\ ( 1 / ( abs ` ( A .ih B ) ) ) e. RR ) ) | 
						
							| 36 | 19 | absgt0i |  |-  ( ( A .ih B ) =/= 0 <-> 0 < ( abs ` ( A .ih B ) ) ) | 
						
							| 37 | 24 36 | bitri |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 <-> 0 < ( abs ` ( A .ih B ) ) ) | 
						
							| 38 | 25 | recgt0i |  |-  ( 0 < ( abs ` ( A .ih B ) ) -> 0 < ( 1 / ( abs ` ( A .ih B ) ) ) ) | 
						
							| 39 | 37 38 | sylbi |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> 0 < ( 1 / ( abs ` ( A .ih B ) ) ) ) | 
						
							| 40 |  | ltle |  |-  ( ( 0 e. RR /\ ( 1 / ( abs ` ( A .ih B ) ) ) e. RR ) -> ( 0 < ( 1 / ( abs ` ( A .ih B ) ) ) -> 0 <_ ( 1 / ( abs ` ( A .ih B ) ) ) ) ) | 
						
							| 41 | 35 39 40 | sylc |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> 0 <_ ( 1 / ( abs ` ( A .ih B ) ) ) ) | 
						
							| 42 | 33 41 | absidd |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> ( abs ` ( 1 / ( abs ` ( A .ih B ) ) ) ) = ( 1 / ( abs ` ( A .ih B ) ) ) ) | 
						
							| 43 | 42 | oveq2d |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> ( ( abs ` ( A .ih B ) ) x. ( abs ` ( 1 / ( abs ` ( A .ih B ) ) ) ) ) = ( ( abs ` ( A .ih B ) ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) ) | 
						
							| 44 | 32 43 | eqtrd |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> ( abs ` ( ( A .ih B ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) ) = ( ( abs ` ( A .ih B ) ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) ) | 
						
							| 45 | 26 | recidzi |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> ( ( abs ` ( A .ih B ) ) x. ( 1 / ( abs ` ( A .ih B ) ) ) ) = 1 ) | 
						
							| 46 | 29 44 45 | 3eqtrd |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> ( abs ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) = 1 ) | 
						
							| 47 | 27 46 | jca |  |-  ( ( abs ` ( A .ih B ) ) =/= 0 -> ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) e. CC /\ ( abs ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) = 1 ) ) | 
						
							| 48 | 24 47 | sylbir |  |-  ( ( A .ih B ) =/= 0 -> ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) e. CC /\ ( abs ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) = 1 ) ) | 
						
							| 49 | 1 2 | normlem7tALT |  |-  ( ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) e. CC /\ ( abs ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) = 1 ) -> ( ( ( * ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) x. ( A .ih B ) ) + ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( B .ih A ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( ( A .ih B ) =/= 0 -> ( ( ( * ` ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) ) x. ( A .ih B ) ) + ( ( ( A .ih B ) / ( abs ` ( A .ih B ) ) ) x. ( B .ih A ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) | 
						
							| 51 | 22 50 | eqbrtrd |  |-  ( ( A .ih B ) =/= 0 -> ( 2 x. ( abs ` ( A .ih B ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) | 
						
							| 52 | 15 51 | sylbir |  |-  ( -. ( A .ih B ) = 0 -> ( 2 x. ( abs ` ( A .ih B ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) | 
						
							| 53 | 10 | recni |  |-  ( normh ` B ) e. CC | 
						
							| 54 | 9 | recni |  |-  ( normh ` A ) e. CC | 
						
							| 55 |  | normval |  |-  ( B e. ~H -> ( normh ` B ) = ( sqrt ` ( B .ih B ) ) ) | 
						
							| 56 | 2 55 | ax-mp |  |-  ( normh ` B ) = ( sqrt ` ( B .ih B ) ) | 
						
							| 57 |  | normval |  |-  ( A e. ~H -> ( normh ` A ) = ( sqrt ` ( A .ih A ) ) ) | 
						
							| 58 | 1 57 | ax-mp |  |-  ( normh ` A ) = ( sqrt ` ( A .ih A ) ) | 
						
							| 59 | 56 58 | oveq12i |  |-  ( ( normh ` B ) x. ( normh ` A ) ) = ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) | 
						
							| 60 | 53 54 59 | mulcomli |  |-  ( ( normh ` A ) x. ( normh ` B ) ) = ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) | 
						
							| 61 | 60 | breq2i |  |-  ( ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) <-> ( abs ` ( A .ih B ) ) <_ ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) | 
						
							| 62 |  | 2pos |  |-  0 < 2 | 
						
							| 63 |  | hiidge0 |  |-  ( B e. ~H -> 0 <_ ( B .ih B ) ) | 
						
							| 64 |  | hiidrcl |  |-  ( B e. ~H -> ( B .ih B ) e. RR ) | 
						
							| 65 | 2 64 | ax-mp |  |-  ( B .ih B ) e. RR | 
						
							| 66 | 65 | sqrtcli |  |-  ( 0 <_ ( B .ih B ) -> ( sqrt ` ( B .ih B ) ) e. RR ) | 
						
							| 67 | 2 63 66 | mp2b |  |-  ( sqrt ` ( B .ih B ) ) e. RR | 
						
							| 68 |  | hiidge0 |  |-  ( A e. ~H -> 0 <_ ( A .ih A ) ) | 
						
							| 69 |  | hiidrcl |  |-  ( A e. ~H -> ( A .ih A ) e. RR ) | 
						
							| 70 | 1 69 | ax-mp |  |-  ( A .ih A ) e. RR | 
						
							| 71 | 70 | sqrtcli |  |-  ( 0 <_ ( A .ih A ) -> ( sqrt ` ( A .ih A ) ) e. RR ) | 
						
							| 72 | 1 68 71 | mp2b |  |-  ( sqrt ` ( A .ih A ) ) e. RR | 
						
							| 73 | 67 72 | remulcli |  |-  ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) e. RR | 
						
							| 74 |  | 2re |  |-  2 e. RR | 
						
							| 75 | 25 73 74 | lemul2i |  |-  ( 0 < 2 -> ( ( abs ` ( A .ih B ) ) <_ ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) <-> ( 2 x. ( abs ` ( A .ih B ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) ) | 
						
							| 76 | 62 75 | ax-mp |  |-  ( ( abs ` ( A .ih B ) ) <_ ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) <-> ( 2 x. ( abs ` ( A .ih B ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) | 
						
							| 77 | 61 76 | bitri |  |-  ( ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) <-> ( 2 x. ( abs ` ( A .ih B ) ) ) <_ ( 2 x. ( ( sqrt ` ( B .ih B ) ) x. ( sqrt ` ( A .ih A ) ) ) ) ) | 
						
							| 78 | 52 77 | sylibr |  |-  ( -. ( A .ih B ) = 0 -> ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) ) | 
						
							| 79 | 14 78 | pm2.61i |  |-  ( abs ` ( A .ih B ) ) <_ ( ( normh ` A ) x. ( normh ` B ) ) |