Metamath Proof Explorer


Theorem sii

Description: Obsolete version of ipcau as of 22-Sep-2024. Schwarz inequality. Part of Lemma 3-2.1(a) of Kreyszig p. 137. This is also called the Cauchy-Schwarz inequality by some authors and Bunjakovaskij-Cauchy-Schwarz inequality by others. See also Theorems bcseqi , bcsiALT , bcsiHIL , csbren . (Contributed by NM, 12-Jan-2008) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses sii.1 X=BaseSetU
sii.6 N=normCVU
sii.7 P=𝑖OLDU
sii.9 UCPreHilOLD
Assertion sii AXBXAPBNANB

Proof

Step Hyp Ref Expression
1 sii.1 X=BaseSetU
2 sii.6 N=normCVU
3 sii.7 P=𝑖OLDU
4 sii.9 UCPreHilOLD
5 fvoveq1 A=ifAXA0vecUAPB=ifAXA0vecUPB
6 fveq2 A=ifAXA0vecUNA=NifAXA0vecU
7 6 oveq1d A=ifAXA0vecUNANB=NifAXA0vecUNB
8 5 7 breq12d A=ifAXA0vecUAPBNANBifAXA0vecUPBNifAXA0vecUNB
9 oveq2 B=ifBXB0vecUifAXA0vecUPB=ifAXA0vecUPifBXB0vecU
10 9 fveq2d B=ifBXB0vecUifAXA0vecUPB=ifAXA0vecUPifBXB0vecU
11 fveq2 B=ifBXB0vecUNB=NifBXB0vecU
12 11 oveq2d B=ifBXB0vecUNifAXA0vecUNB=NifAXA0vecUNifBXB0vecU
13 10 12 breq12d B=ifBXB0vecUifAXA0vecUPBNifAXA0vecUNBifAXA0vecUPifBXB0vecUNifAXA0vecUNifBXB0vecU
14 eqid 0vecU=0vecU
15 1 14 4 elimph ifAXA0vecUX
16 1 14 4 elimph ifBXB0vecUX
17 1 2 3 4 15 16 siii ifAXA0vecUPifBXB0vecUNifAXA0vecUNifBXB0vecU
18 8 13 17 dedth2h AXBXAPBNANB