Metamath Proof Explorer


Theorem sincosq1lem

Description: Lemma for sincosq1sgn . (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion sincosq1lem A0<AA<π20<sinA

Proof

Step Hyp Ref Expression
1 halfpire π2
2 ltle Aπ2A<π2Aπ2
3 1 2 mpan2 AA<π2Aπ2
4 pire π
5 4re 4
6 pigt2lt4 2<ππ<4
7 6 simpri π<4
8 4 5 7 ltleii π4
9 2re 2
10 2pos 0<2
11 9 10 pm3.2i 20<2
12 ledivmul π220<2π22π22
13 4 9 11 12 mp3an π22π22
14 2t2e4 22=4
15 14 breq2i π22π4
16 13 15 bitri π22π4
17 8 16 mpbir π22
18 letr Aπ22Aπ2π22A2
19 1 9 18 mp3an23 AAπ2π22A2
20 17 19 mpan2i AAπ2A2
21 3 20 syld AA<π2A2
22 21 adantr A0<AA<π2A2
23 22 3impia A0<AA<π2A2
24 0xr 0*
25 elioc2 0*2A02A0<AA2
26 24 9 25 mp2an A02A0<AA2
27 sin02gt0 A020<sinA
28 26 27 sylbir A0<AA20<sinA
29 23 28 syld3an3 A0<AA<π20<sinA