Metamath Proof Explorer


Theorem sinhpcosh

Description: Prove that ( sinhA ) + ( coshA ) = ( expA ) using the conventional hyperbolic trigonometric functions. (Contributed by David A. Wheeler, 27-May-2015)

Ref Expression
Assertion sinhpcosh AsinhA+coshA=eA

Proof

Step Hyp Ref Expression
1 sinhval-named AsinhA=siniAi
2 sinhval AsiniAi=eAeA2
3 1 2 eqtrd AsinhA=eAeA2
4 coshval-named AcoshA=cosiA
5 coshval AcosiA=eA+eA2
6 4 5 eqtrd AcoshA=eA+eA2
7 3 6 oveq12d AsinhA+coshA=eAeA2+eA+eA2
8 2cn 2
9 2ne0 20
10 efcl AeA
11 negcl AA
12 efcl AeA
13 11 12 syl AeA
14 10 13 addcld AeA+eA
15 10 13 subcld AeAeA
16 divdir eAeAeA+eA220eAeA+eA+eA2=eAeA2+eA+eA2
17 15 16 syl3an1 AeA+eA220eAeA+eA+eA2=eAeA2+eA+eA2
18 14 17 syl3an2 AA220eAeA+eA+eA2=eAeA2+eA+eA2
19 18 3anidm12 A220eAeA+eA+eA2=eAeA2+eA+eA2
20 8 9 19 mpanr12 AeAeA+eA+eA2=eAeA2+eA+eA2
21 10 2timesd A2eA=eA+eA
22 10 13 10 nppcand AeAeA+eA+eA=eA+eA
23 15 10 13 addassd AeAeA+eA+eA=eAeA+eA+eA
24 21 22 23 3eqtr2rd AeAeA+eA+eA=2eA
25 24 oveq1d AeAeA+eA+eA2=2eA2
26 7 20 25 3eqtr2d AsinhA+coshA=2eA2
27 8 a1i A2
28 9 a1i A20
29 10 27 28 divcan3d A2eA2=eA
30 26 29 eqtrd AsinhA+coshA=eA