Description: Prove that ( sinhA ) + ( coshA ) = ( expA ) using the conventional hyperbolic trigonometric functions. (Contributed by David A. Wheeler, 27-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | sinhpcosh | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sinhval-named | |
|
2 | sinhval | |
|
3 | 1 2 | eqtrd | |
4 | coshval-named | |
|
5 | coshval | |
|
6 | 4 5 | eqtrd | |
7 | 3 6 | oveq12d | |
8 | 2cn | |
|
9 | 2ne0 | |
|
10 | efcl | |
|
11 | negcl | |
|
12 | efcl | |
|
13 | 11 12 | syl | |
14 | 10 13 | addcld | |
15 | 10 13 | subcld | |
16 | divdir | |
|
17 | 15 16 | syl3an1 | |
18 | 14 17 | syl3an2 | |
19 | 18 | 3anidm12 | |
20 | 8 9 19 | mpanr12 | |
21 | 10 | 2timesd | |
22 | 10 13 10 | nppcand | |
23 | 15 10 13 | addassd | |
24 | 21 22 23 | 3eqtr2rd | |
25 | 24 | oveq1d | |
26 | 7 20 25 | 3eqtr2d | |
27 | 8 | a1i | |
28 | 9 | a1i | |
29 | 10 27 28 | divcan3d | |
30 | 26 29 | eqtrd | |