Metamath Proof Explorer


Theorem sinmulcos

Description: Multiplication formula for sine and cosine. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion sinmulcos ABsinAcosB=sinA+B+sinAB2

Proof

Step Hyp Ref Expression
1 simpl ABA
2 1 sincld ABsinA
3 cosf cos:
4 3 a1i Acos:
5 4 ffvelcdmda ABcosB
6 2 5 mulcld ABsinAcosB
7 1 coscld ABcosA
8 sinf sin:
9 8 a1i Asin:
10 9 ffvelcdmda ABsinB
11 7 10 mulcld ABcosAsinB
12 6 11 6 ppncand ABsinAcosB+cosAsinB+sinAcosBcosAsinB=sinAcosB+sinAcosB
13 sinadd ABsinA+B=sinAcosB+cosAsinB
14 sinsub ABsinAB=sinAcosBcosAsinB
15 13 14 oveq12d ABsinA+B+sinAB=sinAcosB+cosAsinB+sinAcosBcosAsinB
16 6 2timesd AB2sinAcosB=sinAcosB+sinAcosB
17 12 15 16 3eqtr4d ABsinA+B+sinAB=2sinAcosB
18 17 oveq1d ABsinA+B+sinAB2=2sinAcosB2
19 2cnd AB2
20 2ne0 20
21 20 a1i AB20
22 6 19 21 divcan3d AB2sinAcosB2=sinAcosB
23 18 22 eqtr2d ABsinAcosB=sinA+B+sinAB2