Metamath Proof Explorer


Theorem sinq12ge0

Description: The sine of a number between 0 and _pi is nonnegative. (Contributed by Mario Carneiro, 13-May-2014)

Ref Expression
Assertion sinq12ge0 A0π0sinA

Proof

Step Hyp Ref Expression
1 0re 0
2 pire π
3 1 2 elicc2i A0πA0AAπ
4 3 simp1bi A0πA
5 rexr 00*
6 rexr ππ*
7 elioo2 0*π*A0πA0<AA<π
8 5 6 7 syl2an 0πA0πA0<AA<π
9 1 2 8 mp2an A0πA0<AA<π
10 sinq12gt0 A0π0<sinA
11 9 10 sylbir A0<AA<π0<sinA
12 11 3expib A0<AA<π0<sinA
13 4 12 syl A0π0<AA<π0<sinA
14 4 resincld A0πsinA
15 ltle 0sinA0<sinA0sinA
16 1 14 15 sylancr A0π0<sinA0sinA
17 13 16 syld A0π0<AA<π0sinA
18 17 expd A0π0<AA<π0sinA
19 0le0 00
20 sin0 sin0=0
21 19 20 breqtrri 0sin0
22 fveq2 0=Asin0=sinA
23 21 22 breqtrid 0=A0sinA
24 23 a1i13 A0π0=AA<π0sinA
25 3 simp2bi A0π0A
26 leloe 0A0A0<A0=A
27 1 4 26 sylancr A0π0A0<A0=A
28 25 27 mpbid A0π0<A0=A
29 18 24 28 mpjaod A0πA<π0sinA
30 sinpi sinπ=0
31 19 30 breqtrri 0sinπ
32 fveq2 A=πsinA=sinπ
33 31 32 breqtrrid A=π0sinA
34 33 a1i A0πA=π0sinA
35 3 simp3bi A0πAπ
36 leloe AπAπA<πA=π
37 4 2 36 sylancl A0πAπA<πA=π
38 35 37 mpbid A0πA<πA=π
39 29 34 38 mpjaod A0π0sinA