| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isslmd.v |
|
| 2 |
|
isslmd.a |
|
| 3 |
|
isslmd.s |
|
| 4 |
|
isslmd.0 |
|
| 5 |
|
isslmd.f |
|
| 6 |
|
isslmd.k |
|
| 7 |
|
isslmd.p |
|
| 8 |
|
isslmd.t |
|
| 9 |
|
isslmd.u |
|
| 10 |
|
isslmd.o |
|
| 11 |
1 2 3 4 5 6 7 8 9 10
|
isslmd |
|
| 12 |
11
|
simp3bi |
|
| 13 |
|
oveq1 |
|
| 14 |
13
|
oveq1d |
|
| 15 |
|
oveq1 |
|
| 16 |
15
|
oveq1d |
|
| 17 |
14 16
|
eqeq12d |
|
| 18 |
17
|
3anbi3d |
|
| 19 |
|
oveq1 |
|
| 20 |
19
|
oveq1d |
|
| 21 |
|
oveq1 |
|
| 22 |
20 21
|
eqeq12d |
|
| 23 |
22
|
3anbi1d |
|
| 24 |
18 23
|
anbi12d |
|
| 25 |
24
|
2ralbidv |
|
| 26 |
|
oveq1 |
|
| 27 |
26
|
eleq1d |
|
| 28 |
|
oveq1 |
|
| 29 |
|
oveq1 |
|
| 30 |
26 29
|
oveq12d |
|
| 31 |
28 30
|
eqeq12d |
|
| 32 |
|
oveq2 |
|
| 33 |
32
|
oveq1d |
|
| 34 |
26
|
oveq2d |
|
| 35 |
33 34
|
eqeq12d |
|
| 36 |
27 31 35
|
3anbi123d |
|
| 37 |
|
oveq2 |
|
| 38 |
37
|
oveq1d |
|
| 39 |
26
|
oveq2d |
|
| 40 |
38 39
|
eqeq12d |
|
| 41 |
40
|
3anbi1d |
|
| 42 |
36 41
|
anbi12d |
|
| 43 |
42
|
2ralbidv |
|
| 44 |
25 43
|
rspc2v |
|
| 45 |
12 44
|
mpan9 |
|
| 46 |
|
oveq2 |
|
| 47 |
46
|
oveq2d |
|
| 48 |
|
oveq2 |
|
| 49 |
48
|
oveq2d |
|
| 50 |
47 49
|
eqeq12d |
|
| 51 |
50
|
3anbi2d |
|
| 52 |
51
|
anbi1d |
|
| 53 |
|
oveq2 |
|
| 54 |
53
|
eleq1d |
|
| 55 |
|
oveq1 |
|
| 56 |
55
|
oveq2d |
|
| 57 |
53
|
oveq1d |
|
| 58 |
56 57
|
eqeq12d |
|
| 59 |
|
oveq2 |
|
| 60 |
|
oveq2 |
|
| 61 |
60 53
|
oveq12d |
|
| 62 |
59 61
|
eqeq12d |
|
| 63 |
54 58 62
|
3anbi123d |
|
| 64 |
|
oveq2 |
|
| 65 |
53
|
oveq2d |
|
| 66 |
64 65
|
eqeq12d |
|
| 67 |
|
oveq2 |
|
| 68 |
|
id |
|
| 69 |
67 68
|
eqeq12d |
|
| 70 |
|
oveq2 |
|
| 71 |
70
|
eqeq1d |
|
| 72 |
66 69 71
|
3anbi123d |
|
| 73 |
63 72
|
anbi12d |
|
| 74 |
52 73
|
rspc2v |
|
| 75 |
45 74
|
syl5com |
|
| 76 |
75
|
3impia |
|