Metamath Proof Explorer


Theorem smatbl

Description: Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s S=KsubMat1AL
smat.m φM
smat.n φN
smat.k φK1M
smat.l φL1N
smat.a φAB1M×1N
smatbl.i φI1..^K
smatbl.j φJLN
Assertion smatbl φISJ=IAJ+1

Proof

Step Hyp Ref Expression
1 smat.s S=KsubMat1AL
2 smat.m φM
3 smat.n φN
4 smat.k φK1M
5 smat.l φL1N
6 smat.a φAB1M×1N
7 smatbl.i φI1..^K
8 smatbl.j φJLN
9 fzossnn 1..^K
10 9 7 sselid φI
11 fz1ssnn 1N
12 11 5 sselid φL
13 fzssnn LLN
14 12 13 syl φLN
15 14 8 sseldd φJ
16 elfzolt2 I1..^KI<K
17 7 16 syl φI<K
18 17 iftrued φifI<KII+1=I
19 elfzle1 JLNLJ
20 8 19 syl φLJ
21 12 nnred φL
22 15 nnred φJ
23 21 22 lenltd φLJ¬J<L
24 20 23 mpbid φ¬J<L
25 24 iffalsed φifJ<LJJ+1=J+1
26 1 2 3 4 5 6 10 15 18 25 smatlem φISJ=IAJ+1