Metamath Proof Explorer


Theorem smattr

Description: Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s S = K subMat 1 A L
smat.m φ M
smat.n φ N
smat.k φ K 1 M
smat.l φ L 1 N
smat.a φ A B 1 M × 1 N
smattr.i φ I K M
smattr.j φ J 1 ..^ L
Assertion smattr φ I S J = I + 1 A J

Proof

Step Hyp Ref Expression
1 smat.s S = K subMat 1 A L
2 smat.m φ M
3 smat.n φ N
4 smat.k φ K 1 M
5 smat.l φ L 1 N
6 smat.a φ A B 1 M × 1 N
7 smattr.i φ I K M
8 smattr.j φ J 1 ..^ L
9 fz1ssnn 1 M
10 9 4 sselid φ K
11 fzssnn K K M
12 10 11 syl φ K M
13 12 7 sseldd φ I
14 fzossnn 1 ..^ L
15 14 8 sselid φ J
16 elfzle1 I K M K I
17 7 16 syl φ K I
18 10 nnred φ K
19 13 nnred φ I
20 18 19 lenltd φ K I ¬ I < K
21 17 20 mpbid φ ¬ I < K
22 21 iffalsed φ if I < K I I + 1 = I + 1
23 elfzolt2 J 1 ..^ L J < L
24 8 23 syl φ J < L
25 24 iftrued φ if J < L J J + 1 = J
26 1 2 3 4 5 6 13 15 22 25 smatlem φ I S J = I + 1 A J