Metamath Proof Explorer


Theorem smfdivdmmbl2

Description: If a functions and a sigma-measurable function have domains in the sigma-algebra, the domain of the division of the two functions is in the sigma-algebra. This is the third statement of Proposition 121H of Fremlin1 p. 39 . Note: While the theorem in the book assumes both functions are sigma-measurable, this assumption is unnecessary for the part concerning their division, for the function at the numerator. It is required only for the function at the denominator. (Contributed by Glauco Siliprandi, 5-Jan-2025)

Ref Expression
Hypotheses smfdivdmmbl2.1 xφ
smfdivdmmbl2.2 _xF
smfdivdmmbl2.3 _xG
smfdivdmmbl2.4 φSSAlg
smfdivdmmbl2.5 φF:AV
smfdivdmmbl2.6 φGSMblFnS
smfdivdmmbl2.7 φAS
smfdivdmmbl2.8 φdomGS
smfdivdmmbl2.9 D=xdomG|Gx0
smfdivdmmbl2.10 H=xdomFDFxGx
Assertion smfdivdmmbl2 φdomHS

Proof

Step Hyp Ref Expression
1 smfdivdmmbl2.1 xφ
2 smfdivdmmbl2.2 _xF
3 smfdivdmmbl2.3 _xG
4 smfdivdmmbl2.4 φSSAlg
5 smfdivdmmbl2.5 φF:AV
6 smfdivdmmbl2.6 φGSMblFnS
7 smfdivdmmbl2.7 φAS
8 smfdivdmmbl2.8 φdomGS
9 smfdivdmmbl2.9 D=xdomG|Gx0
10 smfdivdmmbl2.10 H=xdomFDFxGx
11 2 nfdm _xdomF
12 nfrab1 _xxdomG|Gx0
13 9 12 nfcxfr _xD
14 11 13 nfin _xdomFD
15 ovex FxGxV
16 14 15 10 dmmptif domH=domFD
17 5 fdmd φdomF=A
18 17 7 eqeltrd φdomFS
19 4 8 salrestss φS𝑡domGS
20 eqid domG=domG
21 1 3 4 6 20 smfpimne2 φxdomG|Gx0S𝑡domG
22 9 21 eqeltrid φDS𝑡domG
23 19 22 sseldd φDS
24 4 18 23 salincld φdomFDS
25 16 24 eqeltrid φdomHS