Metamath Proof Explorer


Theorem smfid

Description: The identity function is Borel sigma-measurable. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses smfid.j J=topGenran.
smfid.b B=SalGenJ
smfid.a φA
Assertion smfid φxAxSMblFnB

Proof

Step Hyp Ref Expression
1 smfid.j J=topGenran.
2 smfid.b B=SalGenJ
3 smfid.a φA
4 3 adantr φxAA
5 simpr φxAxA
6 4 5 sseldd φxAx
7 6 fmpttd φxAx:A
8 simpr φyAzAyzyz
9 eqid xAx=xAx
10 9 a1i φyAxAx=xAx
11 simpr φyAx=yx=y
12 simpr φyAyA
13 10 11 12 12 fvmptd φyAxAxy=y
14 13 ad2antrr φyAzAyzxAxy=y
15 9 a1i φzAxAx=xAx
16 simpr φzAx=zx=z
17 simpr φzAzA
18 15 16 17 17 fvmptd φzAxAxz=z
19 18 ad4ant13 φyAzAyzxAxz=z
20 14 19 breq12d φyAzAyzxAxyxAxzyz
21 8 20 mpbird φyAzAyzxAxyxAxz
22 21 ex φyAzAyzxAxyxAxz
23 22 ralrimiva φyAzAyzxAxyxAxz
24 23 ralrimiva φyAzAyzxAxyxAxz
25 3 7 24 1 2 incsmf φxAxSMblFnB